首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Airborne vector gravimetry using precise,position-aided inertial measurement units
Authors:Christopher Jekeli
Institution:(1) Department of Geodetic Science and Surveying, The Ohio State University, 1958 Neil Ave., 43210 Columbus, OH, USA
Abstract:Vector gravimetry using a precise inertial navigation system continually updated with external position data, for example using GPS, is studied with respect to two problems. The first concerns the attitude accuracy requirement for horizontal gravity component estimation. With covariance analyses in the space and frequency domains it is argued that with relatively stable uncompensated gyro drift, the short-wavelength gravity vector can be estimated without the aid of external attitude updates. The second problem concerns the state-space estimation of the gravity signal where considerable approximations must be assumed in the gravity model in order to take advantage of the ensemble error estimation afforded by the Kalman filter technique. Gauss-Markov models for the gravity field are specially designed to reflect the attenuation of the signal at a specific altitude and the omission of the long-wavelength components from the estimation. With medium accuracy INS/GPS systems, the horizontal components of gravity with wavelengths shorter than 250 km should be estimable to an accuracy of 4–6 mgal (µg); while high accuracy systems should yield an improvement to 1–2 mgal.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号