首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Use of GRACE determined secular gravity rates for glacial isostatic adjustment studies in North-America
Authors:Wouter van der Wal  Patrick Wu  Michael G Sideris  CK Shum
Institution:aDepartment of Geomatics Engineering, University of Calgary, 2500 University Drive, N.W., Alberta, Canada T2N 1N4;bDepartment of Geoscience, University of Calgary, Alberta, Canada T2N 1N4;cSchool of Earth Sciences, The Ohio State University, 125 South Oval Mall, Columbus, OH 43210-1308, USA
Abstract:Monthly geopotential spherical harmonic coefficients from the GRACE satellite mission are used to determine their usefulness and limitations for studying glacial isostatic adjustment (GIA) in North-America. Secular gravity rates are estimated by unweighted least-squares estimation using release 4 coefficients from August 2002 to August 2007 provided by the Center for Space Research (CSR), University of Texas. Smoothing is required to suppress short wavelength noise, in addition to filtering to diminish geographically correlated errors, as shown in previous studies. Optimal cut-off degrees and orders are determined for the destriping filter to maximize the signal to noise ratio. The halfwidth of the Gaussian filter is shown to significantly affect the sensitivity of the GRACE data (with respect to upper mantle viscosity and ice loading history). Therefore, the halfwidth should be selected based on the desired sensitivity.It is shown that increase in water storage in an area south west of Hudson Bay, from the summer of 2003 to the summer of 2006, contributes up to half of the maximum estimated gravity rate. Hydrology models differ in the predictions of the secular change in water storage, therefore even 4-year trend estimates are influenced by the uncertainty in water storage changes. Land ice melting in Greenland and Alaska has a non-negligible contribution, up to one-fourth of the maximum gravity rate.The estimated secular gravity rate shows two distinct peaks that can possibly be due to two domes in the former Pleistocene ice cover: west and south east of Hudson Bay. With a limited number of models, a better fit is obtained with models that use the ICE-3G model compared to the ICE-5G model. However, the uncertainty in interannual variations in hydrology models is too large to constrain the ice loading history with the current data span. For future work in which GRACE will be used to constrain ice loading history and the Earth's radial viscosity profile, it is important to include realistic uncertainty estimates for hydrology models and land ice melting in addition to the effects of lateral heterogeneity.
Keywords:GRACE  Glacial rebound  Continental water storage  Present-day ice melt
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号