首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Morphodynamics of a bar-trough surf zone
Authors:LD Wright  P Nielsen  NC Shi  JH List
Institution:

a Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, VA 23062, U.S.A.

b Department of Coastal and Oceanographic Engineering, University of Florida, Gainesville, FL 32611, U.S.A.

Abstract:A field study was made of the distinguishing morphodynamic processes operating in a surf zone which perennially exhibits accentuated bar-trough topography (the “longshore-bar-trough” and “rhytmic-bar-and-beach” states as described by Wright and Short, 1984). Characteristic features of the morphology include a shallow bar with a steep shoreward face, a deep trough, and a steep beach face. This morphology, which is favored by moderate breaker heights and small tidal ranges, strongly controls the coupled suite of hydrodynamic processes. In contrast to fully dissipative surf zones, the bar-trough surf zone is not at all saturated and oscillations at incident wave frequency remain dominant from the break point to the subaerial beach. The degree of incident wave groupiness does not change appreciably across the surf zone. Infragravity standing waves which, in dissipative surf zones, dominate the inshore energy, remain energetically secondary and occur at higher frequencies in the bar trough surf zone. Analyses of the field data combined with numerical simulations of leaky mode and edge wave nodal—antinodal positions over observed surf-zone profiles, indicate that the frequencies which prevail are favored by the resonant condition of antinodes over the bar and nodes in the trough. Standing waves which would have nodes over the bar are suppressed. Sediment resuspension in the surf zone appears to be largely attributable to the incident waves which are the main source of bed shear stress. In addition, the extra near-bottom eddy viscosity provided by the reformed, non-breaking waves traversing the trough significantly affects the vertical velocity profile of the longshore current. Whereas the bar is highly mobile in terms of onshore—offshore migration rates, the beach face and inner regions of the trough are remarkably stable over time.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号