首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The entrainment of high-viscosity magma into low-viscosity magma in eruption conduits
Authors:Armin Freundt  Stephen R Tait
Institution:(1) Institut für Mineralogie, Ruhr-Universität Bochum, D-4630 Bochum 1, Germany
Abstract:We report experiments on the flow of two fluids of contrasting viscosity through a pipe in which low-viscosity fluid occupies the center of the pipe. The volume flux of the low-viscosity fluid in the pipe increased during an experiment but did not reach 100% in most cases. The transition from high- to low-viscosity-dominated outflow involved a drop in pressure gradient and an increase in flow rate due to reduced viscous resistance in the pipe. Initially, the central flow was thin and parallel-sided, but as its diameter increased the flow became unstable. A sequence of instabilities was observed during the course of each experiment, both in time and as a function of height in the pipe. In the most commonly observed instability the central flow adopted a helical geometry. The transition from parallel-sided to unstable flow first appeared at the top of the pipe and propagated downwards against the flow. Axisymmetric instabilities originating at the pipe entrance were also observed. All forms of instability exhibited entrainment of viscous fluid into the faster moving central flow. Entrainment was extensive early in the existence of the central flow, but later on the volume flux of lower-viscosity fluid in the central flow rose more rapidly than the rate of entrainment and the proportion of lower-viscosity fluid increased with time. These compositional changes determined the viscosity of the central flow which was found to control its diameter and velocity. In banded pumice deposits, silicic pumice without mafic component is commonly erupted alongside banded pumice blocks. We infer that banded pumice may correspond to the central flow in our experiments, i. e., that viscous magma has been incorporated into less viscous melt, and that pure acid pumice is derived from the outer flow. Changes in eruption style may be caused by variations in pressure gradient and flow rate due to changes in the viscosity of the melt in the conduit. Varied mafic/silicic proportions and degree of mixing in magmatic associations are controlled by the bulk volume erupted, discharge rate, initial temperature difference and aspect ratio of the conduit.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号