首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Unified 3D critical state bounding-surface plasticity model for soils incorporating continuous plastic loading under cyclic paths. Part I: Constitutive relations
Authors:Roger S Crouch  John P Wolf
Abstract:The unified three-dimensional (3D) critical state bounding-surface plasticity model gUTS enables clays, silts and sands to be treated within a single framework. Furthermore, loose and dense states of a particular soil subjected to a wide range of confinements are viewed as a single material defined by the same set of constants. The model is able to handle both monotonic and complex cyclic paths including those involving a rotation of the principal stress directions. The model incorporates the following features: combined use of radial and deviatoric mapping rules and the use of an apparent normal consolidation line for sands; use of a non-associated flow rule where the ratio of the rates of volumetric plastic strain to deviatoric plastic strain is a function only of the ratio of deviatoric to mean effective stresses and the Lode angle; adoption of a bi-linear critical state line projected onto the plane of the void ratio versus logarithm of mean effective stress; inclusion of a sub-elliptic, or super-elliptic, segment in the plastic dilatancy surface for stress ratios less than critical; use of elliptic segments in the deviatoric planes; movement of the projection centre in the deviatoric mapping region and incorporation of a plastic stiffening effect for cyclic paths which repeatedly load in the same deviatoric direction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号