首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wave propagation and strain localization in a fully saturated softening porous medium under the non‐isothermal conditions
Authors:SeonHong Na  WaiChing Sun
Abstract:The (THM) coupling effects on the dynamic wave propagation and strain localization in a fully saturated softening porous medium are analyzed. The characteristic polynomial corresponding to the governing equations of the THM system is derived, and the stability analysis is conducted to determine the necessary conditions for stability in both non‐isothermal and adiabatic cases. The result from the dispersion analysis based on the Abel–Ruffini theorem reveals that the roots of the characteristic polynomial for the THM problem cannot be expressed algebraically. Meanwhile, the dispersion analysis on the adiabatic case leads to a new analytical expression of the internal length scale. Our limit analysis on the phase velocity for the non‐isothermal case indicates that the internal length scale for the non‐isothermal THM system may vanish at the short wavelength limit. This result leads to the conclusion that the rate‐dependence introduced by multiphysical coupling may not regularize the THM governing equations when softening occurs. Numerical experiments are used to verify the results from the stability and dispersion analyses. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:thermo‐hydro‐mechanics  dynamic wave propagation  stability  dispersion  internal length scale  bifurcation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号