首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A sand control and development model in sandy land based on mixed experiments of arsenic sandstone and sand: A case study in Mu Us Sandy Land in China
Authors:Ni Wang  Jiancang Xie  Jichang Han
Institution:1. State Key Laboratory of Eco-Hydraulic Engineering in Shaanxi, Xi’an University of Technology, Xi’an, 710048, China
2. Shaanxi Estate Development Service Corporation, Xi’an, 710075, China
Abstract:Serious desertification caused by human activity and climate change, in addition to water loss and soil erosion related to arsenic sandstone in the Mu Us Sandy Land, lead to severe scarcity of soil and water resources, which causes worse local agricultural conditions accordingly. Many physical properties of arsenic sandstone is complementary with that of sand, arsenic sandstone is therefore supposed to be blended to enhance water productivity and arability of sandy land. Container experiments are carried out to study the enhancement of water holding capacity of the mixture, the blending ratio of arsenic sandstone and sand, and the proper size of the arsenic sandstone particles, respectively. The results of the experiments show that particle size of 4 cm with a ratio of 1:2 between arsenic sandstone and sand are the proper parameters on blending. Both water content and fertility increase after blending. Water use efficiency in the mixture is 2.7 times higher than that in sand by the water release curves from experiments. Therefore, a new sand control and development model, including arsenic sandstone blending with sand, efficient water irrigation management and reasonable farming system, is put forward to control and develop sandy land so that water-saving agriculture could be developed. Demonstration of potato planting about 153.1 ha in area in the Mu Us Sandy Land in China indicates that water consumption is 3018 m3/ha in the whole growth period. It means that about 61% of irrigation water can be saved compared with water use in coarse sand without treatment. Recycle economic mode and positive feedback of sand resource-crop planting-soil resource are constructed, which changes sand into arable soil and make it possible to develop water-saving agriculture on it. The proposed model will be helpful for soil-water resources utilization and management in the Mu Us Sandy Land.
Keywords:soil-water resource  arsenic sandstone  sand control and development model  water-saving effect  Mu Us Sandy Land
本文献已被 维普 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号