首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Permeability of Triaxially Compressed Sandstone: Influence of Deformation and Strain-rate on Permeability
Authors:J Heiland
Institution:GeoForschungsZentrum Potsdam, Telegrafenberg, D – 14 472 Potsdam, Germany. E-mail: jheiland@slb.com, DE
Abstract:— The influence of differential stress on the permeability of a Lower Permian sandstone was investigated. Rock cylinders of 50 mm in diameter and 100 mm length of a fine-grained (mean grain size 0.2 mm), low-porosity (6–9%) sandstone were used to study the relation between differential stress, rock deformation, rock failure and hydraulic properties, with a focus on the changes of hydraulic properties in the pre-failure and failure region of triaxial rock deformation. The experiments were conducted at confining pressures up to 20 MPa, and axial force was controlled by lateral strain with a rate ranging from 10?6 to 10?7 sec?1. While deforming the samples, permeability was determined by steady-state technique with a pressure gradient of 1 MPa over the specimen length and a fluid pressure level between 40 and 90% of the confining pressure. The results show that permeability of low-porosity sandstones under increasing triaxial stress firstly decreases due to compaction and starts to increase after the onset of dilatancy. This kind of permeability evolution is similar to that of crystalline rocks. A significant dependence of permeability evolution on strain rate was found. Comparison of permeability to volumetric strain demonstrates that the permeability increase after the onset of dilatancy is not sufficient to regain the initial permeability up to failure of the specimen. The initial permeability, which was determined in advance of the experiments, usually was regained in the post-failure region. After the onset of dilatancy, the permeability increase displays a linear dependence on volumetric strain.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号