首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geochemistry and age of ultrahigh pressure metamorphic rocks from the Kokchetav massif (Northern Kazakhstan)
Authors:V S Shatsky  E Jagoutz  N V Sobolev  O A Kozmenko  V S Parkhomenko  M Troesch
Institution:(1) United Institute of Geology, Geophysics and Mineralogy, Novosibirsk 630090, Russia, RU;(2) Max-Planck-Institut fur Chemie, Saarstrasse 23, D-55122 Mainz, Germany, DE
Abstract:Isotopic and geochemical data of the Zerenda series metamorphic rocks from the Kokchetav massif are reported. Some of these rocks contain microdiamond inclusions in garnets and other indicators of ultrahigh pressure metamorphism (P > 40 kbar, T = 900–1000 °C). The diamond-bearing rocks exhibit distinctive geochemical characteristics compared to typical crustal rocks. The REE patterns range from LREE depleted to slightly LREE enriched chondrite normalized (La/Yb)N– 0.1–5.4] with a negative Eu anomaly. They are depleted in incompatible elements (e.g. Sr, Ba, U, Th) with respect to the upper crust. In contrast non-diamondiferous rocks of the Zerenda series exhibit normal crustal geochemistry. All rocks of the Zerenda series have very radiogenic lead isotopes. The measured μ values (238U/204Pb) compared with those calculated for the interval between crust formation and ultrahigh pressure (UHP) metamorphism suggest a decrease by factors of up to 200 during the UHP metamorphism. The Sm-Nd mineral isochrons from the diamond-bearing rocks and other rock types of the Zerenda series give a Middle Cambrian (524–535 Ma) age of metamorphism. The Nd model ages show that crust formation occurred about 2.3 Ga ago. Significant fractionation of Sm and Nd and loss of incompatible elements may be due to partial melting of the protoliths. The Ar-Ar age determinations of secondary biotite and muscovite from the diamond-bearing rocks yield an age of 517 ± 5 Ma. This cooling age requires a short time interval between UHP metamorphism and uplift to a crustal level. Ultrahigh pressure metamorphism might be a significant source of Pb for the mantle. We propose that the radiogenic Pb of the oceanic array is the contamination traces of numerous UHP events. Beside the geological aspect we demonstrate a method of dating a high grade metamorphic terrain using Nd isotopes. We compare whole rock isochrons and mineral isochrons and in this way get some insight into the behaviour of the Sm-Nd system during very high grade metamorphic events. Received: 14 August 1998 / Accepted: 1 June 1999
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号