首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evolution of alkalic lavas at Haleakala Volcano,east Maui,Hawaii
Authors:C -Y Chen  F A Frey  M O Garcia
Institution:(1) Department of Geology, University of Illinois, 61801 Urbana, IL, USA;(2) Department of Earth, Atmospheric, and Planetary Sciences, MIT, 02139 Cambridge, MA, USA;(3) Hawaii Institute of Geophysics, University of Hawaii, 96822 Honolulu, HI, USA
Abstract:The postshield and posterosional stages of Haleakala Volcano contain intercalated alkalic basalt and evolved alkalic lavas. Isotopic and incompatible element abundance ratios in the Haleakala postshield basalts changed systematically with time, providing evidence for significant temporal changes in the mantle components contributing to the magmatic sources. Specifically, a depleted, i.e. low87Sr/86Sr and high143Nd/144Nd, mantle component is more abundant in younger lavas. However, as magma-production rates decreased during the postshield and posterosional stages, basaltic melts in magma reservoirs cooled and fractionated, leading to evolved residual melts such as hawaiite. Because primary basalt compositions changed with time, the evolved Haleakala lavas formed from a range of parental compositions. However, basalts and evolved lavas of similar age and isotopic ratios (Sr and Nd) have major and trace element contents that are consistent with a crystal-fractionation model. Although alkalic basalt and hawaiite are the dominant lavas of the postshield stages of both Haleakala and Mauna Kea volcanoes, there are important differences between their lavas. For example, compositional differences between the hawaiite suites at Haleakala and Mauna Kea indicate that, on average, the evolved lavas at Haleakala formed at lower pressures. Also, at Haleakala basalts are intercalated with hawaiites, whereas at Mauna Kea basalts and hawaiites are separated by a sharp boundary. These differences probably reflect a higher magma supply rate to the Haleakala volcano.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号