首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-pressure,high-temperature stability of surinamite in the system MgO-BeO-Al2O3-SiO2-H2O
Authors:A Hölscher  W Schreyer  D Lattard
Institution:(1) Institut für Mineralogie, Ruhr-Universität, D-4630 Bochum, FRG
Abstract:The MgAl surinamite end member, (Mg3Al3)6]OAlBeSi3O15], was synthesized in the requisite system with and without water. The new phase is monoclinic, space group P2/n, with a=9.881(1)Å; b=11.311(1) Å; c=9.593(1) Å; beta=109.52(2)°. Refractive indices are n x=1.7015(20); n y=1.7035(20); n z=1.7055(20). The infrared spectrum shows characteristic differences against the structurally related and optically extremely similar phase sapphirine.Using the seeding technique, the preliminary stability field for MgAl surinamite was found to lie at high temperatures (gap650 °C) and high pressures (gap4 kbar). At lower temperatures breakdown takes place to hydrous assemblages of chlorite, talc, and chrysoberyl with kyanite or yoderite; at lower pressures chrysoberyl forms parageneses with sapphirine and cordierite. In crystal chemical terms the underlying principle for the stability of surinamite versus that of the low-pressure assemblages is the higher proportion of octahedrally coordinated Al in surinamite (75%). Following the same principle surinamite itself decomposes at still higher pressures to a paragenesis, in which all Al enters octahedral coordination (pyrope+a chrysoberyl-type phase and some unidentified X-ray peaks).The stability field of synthetic MgAl surinamite is in good agreement with P, T-estimates of some 8–12 kbar, 800°–950° C as taken from the literature for the few occurrences of natural, Fe-bearing surinamite in granulite and upper amphibolite facies environments. The incorporation of iron in surinamite must be limited, because this mineral is known to coexist with its more iron-rich breakdown assemblage almandine-rich garnet+chrysoberyl. As the minimum melting curve of granite under hydrous conditions lies outside the surinamite field up to a water pressure of about 20 kbar, the absence of surinamite in normal granitic pegmatites can already be explained by physical constraints. However, there are probably also chemical constraints in the generally high Fe/Mg bulk chemistry of the pegmatite environments.Now at Institut für Kristallographie, Technische Hochschule, Templergraben 55, D-5100 Aachen, FRG
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号