首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlations among combustion effluent species at Barrow,Alaska: Aerosol black carbon,carbon dioxide,and methane
Authors:A D A Hansen  T J Conway  L P Strele  B A Bodhaine  K W Thoning  P Tans  T Novakov
Institution:(1) Atmospheric Aerosol Research Group, Lawrence Berkeley Laboratory, University of California, 94720 Berkeley, CA, U.S.A.;(2) Geophysical Monitoring for Climatic Change, Air Resources Laboratory/NOAA, 325 Broadway, 80303 Boulder, CO, U.S.A.;(3) Cooperative Institute for Research in Environmental Sciences, University of Colorado/NOAA, Campus Box 449, 80309 Boulder, CO, U.S.A.
Abstract:As part of the second Arctic Gas and Aerosol Sampling Program (AGASP II) continuous measurements of atmospheric aerosol black carbon (BC) were made at the NOAA/GMCC observatory at Barrow, Alaska (71°19primeN, 156°36primeW) during the period March 21–April 22, 1986. Black carbon is produced only by incomplete combustion of carbonaceous materials and so is a particularly useful atmospheric indicator of anthropogenic activities. The BC data have been analyzed together with the concurrent measurements of carbon dioxide (CO2), methane (CH4), and condensation nuclei (CN) that are routinely made at the observatory. All four species showed elevated and highly variable concentrations due to local human activities, principally in the township of Barrow, 7 km to the southwest, and at the DEW Line radar installation 1 km to the northwest. We distinguish between those periods of the record that are affected by local activities and those that are not, on the basis of the short-term (periods of up to 1 hour) variability of the continuous CO2 and CN records, with large short-term variabilities indicating local sources. We identified seven periods of time (events) with durations ranging from 13 to 37 hours when the BC, CO2, and CH4 concentrations changed smoothly over time, were highly correlated with each other, and were not influenced by local activities. These events had BC/CO2 ratios in the range (50–103)×10–6. These ratios are dimensionless since we convert the CO2 concentrations to units of ng m–3 of carbon. Such values of BC/CO2 are characteristic of the combustion effluent from large installations burning heavy fuel oil or coal, automobiles, and domestic-scale natural gas usage. We conclude that these events are indicative of air masses that have been polluted with combustion emissions in a distant location and then transported to the Arctic. In the absence of species-selective loss mechanisms, these air masses will maintain their combustion effluent signatures during the transport. The BC/CO2 ratios found for the local combustion activities are consistent with those expected from known combustion processes.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号