首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wave-tide-surge coupled simulation for typhoon Maemi
Authors:Byung Ho Choi  Byung Il Min  Kyeong Ok Kim  Jin Hee Yuk
Institution:113. Department of Civil and Environmental Engineering, Sungkyunkwan University, Suwon, 440-746, Korea
213. Marine Environments & Conservation Research Division, Korea Institute of Ocean Science & Technology, Ansan, 426-744, Korea
313. Supercomputing Center, Korea Institute of Science and Technology Information, Daejeon, 305-806, Korea
Abstract:The main task of this study focuses on studying the effect of wave-current interaction on currents, storm surge and wind wave as well as effects of current induced wave refraction and current on waves by using numerical models which consider the bottom boundary layer and sea surface roughness parameter for shallow and smooth bed area around Korean Peninsula. The coupled system (unstructured-mesh SWAN wave and ADCIRC) run on the same unstructured mesh. This identical and homogeneous mesh allows the physics of wave-circulation interactions to be correctly resolved in both models. The unstructured mesh can be applied to a large domain allowing all energy from deep to shallow waters to be seamlessly followed. There is no nesting or overlapping of structured wave meshes, and no interpolation is required. In response to typhoon Maemi (2003), all model components were validated independently, and shown to provide a faithful representation of the system’s response to this storm. The waves and storm surge were allowed to develop on the continental shelf and interact with the complex nearshore environment. The resulting modeling system can be used extensively for prediction of the typhoon surge. The result show that it is important to incorporate the wave-current interaction effect into coastal area in the wave-tide-surge coupled model. At the same time, it should consider effects of depth-induced wave breaking, wind field, currents and sea surface elevation in prediction of waves. Specially, we found that: (1) wave radiation stress enhanced the current and surge elevation otherwise wave enhanced nonlinear bottom boundary layer decreased that, (2) wind wave was significantly controlled by sea surface roughness thus we cautiously took the experimental expression. The resulting modeling system can be used for hindcasting (prediction) the wave-tide-surge coupled environments at complex coastline, shallow water and fine sediment area like areas around Korean Peninsula.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
点击此处可从《中国海洋工程》浏览原始摘要信息
点击此处可从《中国海洋工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号