首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chloritoid and staurolite stability: implications for metamorphism in the Archaean Yilgarn Block, Western Australia
Authors:M J BICKLE  N J ARCHIBALD
Institution:Department of Geology, University of Western Australia, Nedlands, W.A. 6009, Australia
Abstract:Abstract The stability of quartz-chloritoid-staurolite-almandine-cordierite and aluminium silicates is used to constrain both metamorphic conditions and pressure-temperature trajectories for two localities within the 2700 Ma Archaean Yilgarn Block in Western Australia. Available experimental data are used to calculate thermodynamic data for a self-consistent set of equilibria between these minerals. A lower amphibolite facies locality from the margin of a lower strain area contains assemblages including quartz-chloritoid-staurolite-garnet-biotite with altered cordierite replacing chloritoid, quartz-staurolite-andalusite, and quartz-cordierite-andalusite-biotite. This locality was heated to 530–560°C in the andalusite field, at 4.2 kbar. A sample from a mid- to upper-amphibolite facies, highly strained locality contains relict staurolite enclosed by andalusite, in turn replaced by cordierite and muscovite with biotite and sillimanite in the matrix. The assemblage was heated isobarically from conditions near the maximum experienced by the lower grade locality of 560°C at 4.2 kbar to temperatures in excess of the andalusite-sillimanite transition but within the quartz plus muscovite stability field (600–650°C). The higher grade locality is close to a granitoid dome and sections based on gravity profiles reveal that this locality is underlain by granitoid at shallow depths. The higher grade metamorphism apparently reflects superposition of the thermal aureole on regional metamorphic conditions similar to those in the lower grade areas.
Keywords:Key-words: Archaean  chloritoid  metamorphism  staurolite  Yilgarn Block  Australia
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号