首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of the oceanic lithosphere velocity on free convection in the asthenosphere beneath mid-ocean ridges
Authors:A A Kirdyashkin  A G Kirdyashkin
Institution:(1) Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, pr. Akademika Koptyuga 3, Novosibirsk, 630090, Russia
Abstract:The paper presents results obtained in experiments on a horizontal layer heated from below in its central part and cooled from above; the layer models the oceanic asthenosphere. Flow velocity and temperature profiles are measured and the flow structure under boundary layer conditions is determined (at Rayleigh numbers Ra > 5 × 105). The flow in the core of a plane horizontal layer heated laterally and cooled from above develops under conditions of a constant temperature gradient averaged over the layer thickness. The flow core is modeled by a horizontal layer with a moving upper boundary and with adiabatic bounding surfaces under conditions of a constant horizontal gradient of temperature. Exact solutions of free convection equations are found for this model in the Boussinesq approximation. Model results are compared with experimental data. Temperature and flow velocity ranges are determined for the boundary layer regime. Based on the experimental flow velocity profiles, an expression is found for the flow velocity profile in a horizontal layer with a mobile upper boundary heated laterally and cooled from above. Free convection velocity profiles are obtained for the asthenosphere beneath a mid-ocean ridge (MOR) with a mobile lithosphere. An expression is obtained for the tangential stress at the top of the asthenosphere beneath an MOR and the total friction force produced by the asthenospheric flow at the asthenosphere-lithosphere boundary is determined.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号