首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A one-dimensional viscoelastic and viscoplastic constitutive approach to modeling the delayed behavior of clay and organic soils
Authors:Aldo Madaschi  Alessandro Gajo
Institution:1.Department of Civil, Environmental and Mechanical Engineering,University of Trento, Trento,Italy;2.School of Architecture, Civil and Environmental Engineering, ENAC, Laboratory of Soil Mechanics, LMS,école Polytechnique Fédérale de Lausanne, EPFL,Lausanne,Switzerland
Abstract:Accurate modeling of the time-dependent behavior of geomaterials is of great importance in a number of engineering structures interacting with soft, highly compressible clay layers or with organic clays and peats. In this work, a uniaxial constitutive model, based on Perzyna’s overstress theory and directly extendible to multiaxial stress conditions, is formulated and validated. The proposed constitutive approach essentially has three innovative aspects. The first concerns the implementation of two viscoplastic mechanisms within Perzyna’s theory in order to distinguish between short-term (quasi-instantaneous) and long-term plastic responses. Similarly, elastic response is simulated by combining an instantaneous and a long-term viscous deformation mechanism. The second innovative aspect concerns the use of a bespoke logarithmic law for viscous effects, which has never been used before to simulate delayed soil behavior (as far as the authors are aware). The third concerns the model’s extensive validation by simulating a number of different laboratory test results, including conventional and unconventional oedometer tests with small and large load increments/decrements and wide and narrow loading/unloading cycles, constant rates of stress and strain tests, and oedometer tests performed in a Rowe consolidation cell with measurement of pore pressure dissipation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号