首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Three-dimensional DEM analysis of single geogrid-encased stone columns under unconfined compression: a parametric study
Authors:Meixiang Gu  Jie Han  Minghua Zhao
Institution:1.College of Civil Engineering,Hunan University,Changsha,China;2.Civil, Environmental and Architectural Engineering (CEAE) Department,The University of Kansas,Lawrence,USA
Abstract:Three-dimensional discrete element method (DEM) was employed in this study to analyze the behavior of single geogrid-encased stone columns under unconfined compression. Four important parameters were investigated to understand and evaluate their effects on the behavior of the encased columns by seven DEM models. The biaxial geogrid used as an encasement material for stone columns was simulated using parallel-bonded particles, and the aggregate in the stone column was simulated using graded particles. Both the macroscopic responses (e.g., vertical pressure–strain curves) and the microscopic interactions (e.g., contact force, coordination number, and sliding fraction) of the columns under unconfined compression were analyzed and are presented in this paper. The numerical results show that the geogrid encasement with high tensile stiffness could provide high confining stresses and then effectively increased the bearing capacity of the column. The short column yielded quickly even though its column modulus at a small deformation was relatively high. The modulus of the column slightly decreased with an increase in the column diameter due to high circumferential strains mobilized in the geogrid encasement. The column with large aggregate was stiffer and deformed less than the column with small aggregate. Selecting aggregate with a size larger than the geogrid aperture size was an effective way to achieve better interlocking between the aggregate and the geogrid and to minimize mass loss for the geogrid-encased stone column under loading. Due to limited deformation allowed by the geogrid encasement, a coefficient of radial stress equal to half of the coefficient of passive earth pressure was suggested to estimate the ultimate bearing capacity of the geosynthetic-encased stone column.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号