首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phyllosilicates in the matrix of the unique carbonaceous chondrite Lewis Cliff 85332 and possible implications for the aqueous alteration of CI chondrites
Authors:Adrian J BREARLEY
Abstract:Abstract— The fine-grained matrix of the unique, unequilibrated carbonaceous chondrite Lewis Cliff (LEW) 85332 has been studied by scanning electron microscopy (SEM), electron probe microanalysis (EPMA) and transmission electron microscopy (TEM). Compositionally, LEW 85332 has a matrix that is more Fe-rich than typical CI chondrites but has elemental abundance ratios that appear to be closer to CI matrices than to CM or CR chondrites. The mineralogy of the matrix is dominated by phyllosilicate phases that are predominantly interlayered Fe-rich serpentine/saponite; anhydrous silicate phases such as olivine and pyroxene are rare. Minor magnetite, troilite and ferrihydrite also occur associated with the phyllosilicates. Despite the high degree of weathering in LEW 85332, the phyllosilicates appear to have an extraterrestrial origin, but the highly variable Mg/Fe ratios of saponite may be the result of partial terrestrial oxidation of Fe-rich saponite to a more Mg-rich saponite and ferrihydrite. Alternatively, some of the ferrihydrite may have formed as a result of terrestrial weathering of Fe-Ni metal. The compositional and mineralogical data suggest that the matrix of LEW 85332 may represent a very early stage in the type of aqueous alteration experienced by the CI chondrites, although it is improbable that LEW 85332 was a precursor to the CI chondrites because of its high abundance of chondrules. The absence of carbonates, the high-Fe content of the matrix and phyllosilicate phases and relatively low abundance of magnetite all indicate that the degree of oxidation and leaching of LEW 85332 matrix was significantly less than that experienced by the CI chondrites. The absence of clear evidence for alteration of chondrules suggests that either the formation of the hydrous phases in the matrix occurred prior to accretion or that alteration occurred on a parent body and involved limited amounts of fluid, such that the reactions took place preferentially and exclusively within the fine-grained (anhydrous?) matrix materials.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号