首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Constraints on the role of impact heating and melting in asteroids
Authors:K KEIL  D ST FFLER  S G LOVE  E R D SCOTT
Institution:K. KEIL,D. STÖFFLER,S. G. LOVE,E. R. D. SCOTT
Abstract:Abstract— Imaging of asteroids Gaspra and Ida and laboratory studies of asteroidal meteorites show that impacts undoubtedly played an important role in the histories of asteroids and resulted in shock metamorphism and the formation of breccias and melt rocks. However, in recent years, impact has also been called upon by numerous authors as the heat source for some of the major geological processes that took place on asteroids, such as global thermal metamorphism of chondrite parent bodies and a variety of melting and igneous events. The latter were proposed to explain the origin of ureilites, aubrites, mesosiderites, the Eagle Station pallasites, acapulcoites, lodranites, and the IAB, IIICD, and HE irons. We considered fundamental observations from terrestrial impact craters, combined with results from laboratory shock experiments and theoretical considerations, to evaluate the efficiency of impact heating and melting of asteroids. Studies of terrestrial impact craters and relevant shock experiments suggest that impact heating of asteroids will produce two types of impact melts: (1) large-scale whole rock melts (total melts, not partial melts) at high shock pressure and (2) localized melts formed at the scale of the mineral constituents (mineral specific or grain boundary melting) at intermediate shock pressures. The localized melts form minuscule amounts of melt that quench and solidify in situ, thus preventing them from pooling into larger melt bodies. Partial melting as defined in petrology has not been observed in natural and experimental shock metamorphism and is thermodynamically impossible in a shock wave-induced transient compression of rocks. The total impact melts produced represent a minuscule portion of the displaced rock volume of the parent crater. Internal differentiation by fractional crystallization is absent in impact melt sheets of craters of sizes that can be tolerated by asteroids, and impact melt rocks are usually clast-laden. Thermal metamorphism of country rocks by impact is extremely minor. Experimental and theoretical considerations suggest that (1) single disruptive impacts cannot raise the average global temperature of strength- or gravity-dominated asteroids by more than a few degrees; (2) cumulative global heating of asteroids by multiple impacts is ineffective for asteroids less than a few hundred kilometers in diameter; (3) small crater size, low gravity, and low impact velocity suggest that impact melt volume in single asteroidal impacts is a very small (0.01–0.1%) fraction of the total displaced crater volume; (4) total impact melt volume formed during the typical lifetime of an asteroid is a small fraction (<0.001) of the volume of impact-generated debris; and (5) much of the impact melt generated on asteroidal targets is ejected from craters with velocities greater than escape velocity and, thus, not retained on the asteroid. The inescapable conclusion from these observations and calculations is that impacts cannot have been the heat source for the origin of the meteorite types listed above, and we must turn to processes other than impact, such as decay of short-lived radionuclides or electromagnetic induction during an early T-tauri phase of the Sun to explain heating and melting of the parent bodies of these meteorites.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号