首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Biomediation of calcrete at the gold anomaly of the Barns prospect,Gawler Craton,South Australia
Authors:Andreas Schmidt Mumm  Frank Reith
Institution:1. School of Earth and Environmental Sciences, CRC LEME, The University of Adelaide, Adelaide, 5005 South Australia, Australia;2. Department of Earth and Marine Sciences, CRC LEME, Australian National University, 0200 ACT, Australia
Abstract:Anomalously high Au concentrations (2.5 to 50 ppb) in regolith carbonate accumulations, such as calcrete and calcareous sands in aeolian sand dunes overlying Au mineralisation of the Gawler Craton, South Australia, show a marked covariance of Au with K, Mg and most notably Ca. This relationship appears to be linked to the authigenic formation of smectites and carbonates within the aeolian dunes in the region. However, little is known about the processes involved in the formation of carbonates under semi-arid and arid conditions. In this study the geochemical properties of aeolian dunes along several depth profiles of 2 to 4 m are investigated in order to assess the relationship between Au mobility and calcrete formation. In the profiles a strongly systematic relationship between Au and the increasing Ca–Mg contents at depth highlights the close association between the enrichment of Au in the calcrete and the underlying hydrothermal mineralisation. Intense calcrete formation and concurrent Au enrichment also occurs in the vicinity of roots penetrating the dune. Thin section petrography and cathodoluminescence show that most of the calcrete in the regolith profiles is micritic; some sparic crystallites have also been identified. To demonstrate the presence of microbial processes that may mediate the formation of calcrete, samples from a depth profile in the dune were taken under sterile conditions. After amendment with urea and incubation of up to 24 h, up to 18 mg/l of NH4+ were detected in near surface samples. At depth of 2.3 m 1 mg/l NH4+ were detected compared to a control that contained below 0.05 mg/l NH4+. These results suggest that the genesis of calcrete and pedogenic carbonate in the area may be partly biologically mediated via processes such as the metabolic breakdown of urea by resident microbiota which generates a pH and pCO2 environment conducive to the precipitation of carbonate. In the process of urea breakdown organic Au complexes such as Au-amino acid complexes may become destabilised in solution and Au may be co-precipitated, resulting in the fine, non-particulate distribution of Au throughout the micritic calcrete carbonate. In conclusion, this study suggests a coupled mechanism of biologically mediated and inorganic mechanisms that lead to the formation of Au-in-calcrete anomalies.
Keywords:Calcrete  Gold anomaly  Trace elements  Gawler Craton  Biochemistry  Urease
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号