首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Mapping mineral prospectivity for Cu polymetallic mineralization in southwest Fujian Province,China
Institution:1. State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China;2. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;1. CSRE, Indian Institute of Technology Bombay, Powai, 400076 Mumbai India;2. Centre for Exploration Targeting, University of Western Australia, Crawley 6009, WA, Australia;3. Department of Earth and Oceans, James Cook University, Townsville, Queensland, Australia
Abstract:In this study, both the fuzzy weights of evidence (FWofE) and random forest (RF) methods were applied to map the mineral prospectivity for Cu polymetallic mineralization in southwestern Fujian Province, which is an important Cu polymetallic belt in China. Recent studies have revealed that the Zijinshan porphyry–epithermal Cu deposit is associated with Jurassic to Cretaceous (Yanshanian) intermediate to felsic intrusions and faulting tectonics. Evidence layers, which are key indicators of the formation of Zijinshan porphyry–epithermal Cu mineralization, include: (1) Jurassic to Cretaceous intermediate–felsic intrusions; (2) mineralization-related geochemical anomalies; (3) faults; and (4) Jurassic to Cretaceous volcanic rocks. These layers were determined using spatial analyses in support by GeoDAS and ArcGIS based on geological, geochemical, and geophysical data. The results demonstrated that most of the known Cu occurrences are in areas linked to high probability values. The target areas delineated by the FWofE occupy 10% of the study region and contain 60% of the total number of known Cu occurrences. In comparison with FWofE, the resulting RF areas occupy 15% of the study area, but contain 90% of the total number of known Cu occurrences. The normalized density value of 1.66 for RF is higher than the 1.15 value for FWofE, indicating that RF performs better than FWofE. Receiver operating characteristics (ROC) were used to validate the prospectivity model and check the effects of overfitting. The area under the ROC curve (AUC) was greater than 0.5, indicating that both prospectivity maps are useful in Cu polymetallic prospectivity mapping in southwestern Fujian Province.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号