首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structural and statistical characterization of joints and multi-scale faults in an alternating sandstone and shale turbidite sequence at the Santa Susana Field Laboratory: Implications for their effects on groundwater flow and contaminant transport
Institution:1. Department of Geological and Environmental Sciences, Stanford University, Stanford, CA, 94305, USA;2. Laboratorio de Modelado Geológico (LaMoGe), Instituto de Estudios Andinos Don Pablo Groeber, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina;3. G360, Centre for Applied Groundwater Research, School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
Abstract:This paper describes the properties of faults and fractures in the Upper Cretaceous Chatsworth Formation exposed at Santa Susana Field Laboratory and its surroundings (Simi Hills, California), where groundwater flow and contamination have been studied for over three decades.The complex depositional architecture of this turbidite consisting of alternating sandstones and shales, interacting with formative stress conditions are responsible for multi-scale fault hierarchies and permeable fractures in which nearly all groundwater flow occurs.Intensity and distribution of background fractures and their relation to bedding thickness are established for sandstones, the dominant lithology. The architecture of faults with increasing displacement is described, and relationships among fault dimensional parameters captured.Data from ~400 boreholes and piezometers reveal the effect of faults and fractures on groundwater flow. Large hydraulic head differences, observed across fault zones with shale-rich cores, indicate these structures as cross-flow barriers. Moreover, hydraulic head profiles under ambient conditions, and pumping tests suggest strong hydraulic connectivity in all directions to depth of hundreds of meters.This outcrop-based structural characterization relates the horizontal hydraulic conductivity to the observed well-connected fracture network, and explains the strong vertical connectivity across low-hydraulic conductivity shales as faults and sheared fractures provide flow pathways.
Keywords:Joint zones  Fracture attributes  Fault zone hierarchy  Fracture dimensional parameters  Fluid flow
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号