首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Compositions of biotite,amphibole, apatite and silicate melt inclusions from the Tongchang mine,Dexing porphyry deposit,SE China: Implications for the behavior of halogens in mineralized porphyry systems
Institution:1. School of Earth Sciences and Resources, China University of Geosciences (Beijing), Beijing 100083, China;2. Department of Earth and Planetary Sciences, American Museum of Natural History, New York, NY 10024-5192, USA;3. Henan Institute of Geological Survey, Henan Bureau of Geo-Exploration and Mineral Development, Zhengzhou 450001, China;1. School of Physical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;2. School of Chemical Engineering, University of Adelaide, Adelaide, SA 5000, Australia;3. BHP Billiton, Olympic Dam, Adelaide, SA 5000, Australia;1. State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China;2. University of Chinese Academy of Sciences, Beijing 100049, China;3. Department of Geological Sciences, Indiana University, Bloomington, IN 47405, USA;1. Eberhard-Karls Universität Tübingen, Mathematisch-Naturwissenschaftliche Fakultät, FB Geowissenschaften, Wilhelmstrasse 56, D-72074 Tübingen, Germany;2. Institute of Precambrian Geology and Geochronology RAS, Makarova Emb. 2, St. Petersburg 199034, Russia;3. St. Petersburg State University, Universitetskaya Emb., 7/9, St. Petersburg 199034, Russia
Abstract:The Dexing deposit, located in the Circum-Pacific ore belt, is the largest porphyry copper deposit in eastern China. It is composed of 3 separate plutons, which host three mines: Tongchang, Fujiawu and Zhushahong mines. The porphyritic granodiorite samples studied in this investigation were collected from the Tongchang ore-forming pluton of this giant deposit. This paper presents electron microprobe analyses of biotite, apatite, amphibole, plagioclase, potassium feldspar and rehomogenized glassy melt inclusions from the Tongchang porphyritic granodiorites. Petrographic observations of the samples are consistent with portions of the granodioritic magma represented by our samples being overprinted by potassic hydrothermal fluid which variably altered these minerals.All of the studied micas are Mg-rich biotites. The biotites are separated into altered magmatic and secondary types based on their petrographic and geochemical characteristics. The phlogopite components of the secondary biotites are typically higher than those of the altered magmatic biotites, and the XMg values of all biotites correlate negatively with Cl contents, consistent with the Mg–Cl avoidance principle. The XMg values also correlate negatively with (K2O + Na2O + BaO), FeO and TiO2 for both generations of biotites. The calculated log (fH2O/fHCl) values (for 690 K) of the coexisting potassic fluids, which are determined from the altered magmatic biotite compositions, range from 4.43 to 4.67, and are very similar to those of other major porphyry deposits. However, the log(fH2O/fHF) and log(fHF/fHCl) values for the same batch of hydrothermal fluids are significant higher and lower than those of these other porphyry deposits, respectively.The Cl concentrations of amphiboles and melt inclusions range from 0.18 to 0.32 wt.% and 0.15 to 0.44 wt.%, respectively. Most apatites trapped in biotite and plagioclase phenocrysts display a bimodal Cl distribution: 0.19 to 1.35 wt.% and 1.48 to 3.73 wt.%. Similarly, the S contents of the apatite also show a distinct bimodal distribution reflecting the effects of variable anhydrite saturation during evolution of the Tongchang melt and variable dissolution of anhydrite by saline aqueous fluids. The Cl contents of the apatites from the Tongchang system are typically higher than those of other studied porphyry deposits. Furthermore, the Cl contents of the melt inclusions are at or very near the Cl saturation levels (0.36 to 0.46 wt.% at 850 °C and 50 MPa and 0.42 to 0.54 wt.% at 850 °C and 200 MPa) for these melt compositions at shallow crustal pressures. These findings suggest that the area of the granodioritic magma represented by our samples, and perhaps the bulk of the Tongchang granodioritic magma was rich in Cl. The melt inclusion compositions are consistent with a high-salinity, hydrosaline liquid being exsolved directly from the granodioritic melt directly. This high-salinity hydrosaline liquid was likely very efficient at dissolving, transporting and precipitating ore metals in the mineralizing magmatic–hydrothermal system.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号