首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatite fission track data
引用本文:李小明,宋友桂.Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatite fission track data[J].中国地球化学学报,2006,25(4):396-401.
作者姓名:李小明  宋友桂
作者单位:Key Laboratory of Marginal Sea Geology Guangzhou Insitute of Geochemistry Chinese Academy of Sciences,State Key Laboratory of Loess and Quaternary Geology Chinese Academy of Sciences,Guangzhou 510640 China State Key Laboratory of Loess and Quaternary Geology Chinese Academy of Sciences Xi'an 710075 China,Xi'an 710075 China
基金项目:国家重点实验室基金,国家自然科学基金,CAS Key Laboratory of Marginal Sea Geology
摘    要:1 Introduction The Lanping Basin, western Yunnan Province,Southwest China, is situated at the juncture of the Eurasian and Indian plates, and it is part of eastern Tethys, located in between the Lancangjiang and Jinshajiang-Ailaoshan faults, is a part of…

关 键 词:裂变痕迹  时空框架  云南西部  矿化作用

Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatite fission track data
Xiaoming Li,Yougui Song.Cenozoic evolution of tectono-fluid and metallogenic process in Lanping Basin, western Yunnan Province, Southwest China: Constraints from apatite fission track data[J].Chinese Journal of Geochemistry,2006,25(4):396-401.
Authors:Xiaoming Li  Yougui Song
Institution:(1) Key Laboratory of Marginal Sea Geology, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China;(2) State Key Laboratory of Loess and Quaternary Geology, Chinese Academy of Sciences, Xi’an, 710075, China
Abstract:Since the Mesozoic, abundant metal and salt deposits have been formed in the Lanping Basin, western Yunnan Province, Southwest China, constituting a well-known hydrothermal ore belt in China. Most of the deposits are meso-epithermal hydrothermal deposits. This paper preliminarily deals with the mineralization ages of hydrothermal deposits in the Lanping Basin by using the apatite fission track method, and integrates the spatial distribution of the deposits and their regional geological backgrounds, to give the preliminary viewpoints as follows: (1) the apatite fission track ages acquired range from 19.9 Ma to 52.8 Ma, much younger than those of their host strata, so they may be considered to be mineralization ages, which represent the late mineralization period; (2) the apatite fission track ages tend to become younger from the west to the middle of the basin, indicating that the latest evolution of tectono-fluid and/or metallogenic processes of the middle basin ended later than that in the west; (3) in the Paleogene, most of the Cu deposits were formed in the western part of the basin; (4) the major metallogenic processes occur between the Paleogene and the Neogene, because the eastern and western edges of the basin were subducted into and collided with its bilateral continental blocks, respectively, and the central fault was strongly activated, which led to the processes of large-scale ore-forming fluids, and their differentiation and transport because of the variation of their physical and chemical properties. Having been squeezed and uplifted, the Lanping Basin became an intermontane basin that contains many kinds of fluid traps resulting in the formation of different types of ore deposits (for example, Pb-Zn, Cu, Ag) of different scales in the middle of the basin. Simultaneously, the fluids with volatile elements such as Hg, Sb and As were transported upwards along the central fault system and diffused into its subordinate fractures, thus leading to the metallogenic processes of Hg, Sb and As in the eastern composite anticline of the Lanping Basin; (5) and later, these ore deposits experienced reformation and oxidization. To summarize,deep giant faults were active in the basin, and metallogenic processes were constrained by the evolution of tectono-fluids in the Lanping Basin. Simultaneously, the occurrence of the metallogenic processes made the nature of fluid and the structural environment change, which led to returning and recycling of the fluids. Multi-stage and zonational metallogenic processes are the characteristics of the ore deposits in the Lanping Basin.
Keywords:fission track  tectono-fluid  metallogenic process  spatial-temporal framework  Lanping Basin  western Yunnan  Cenozoic
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号