首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seasonal and event‐based drivers of runoff and phosphorus export through agricultural tile drains under sandy loam soil in a cool temperate region
Authors:WV Lam  ML Macrae  MC English  I P O'Halloran  JM Plach  Y Wang
Institution:1. Department of Geography and Environmental Management, University of Waterloo, Waterloo, ON, Canada;2. Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, ON, Canada;3. School of Environmental Sciences, Ridgetown Campus, University of Guelph, Ridgetown, ON, Canada
Abstract:Frequent algal blooms in surface water bodies caused by nutrient loading from agricultural lands are an ongoing problem in many regions globally. Tile drains beneath poorly and imperfectly drained agricultural soils have been identified as key pathways for phosphorus (P) transport. Two tile drains in an agricultural field with sandy loam soil in southern Ontario, Canada were monitored over a 28‐month period to quantify discharge and the concentrations and loads of dissolved reactive P (DRP) and total P (TP) in their effluent. This paper characterizes seasonal differences in runoff generation and P export in tile drain effluent and relates hydrologic and biogeochemical responses to precipitation inputs and antecedent soil moisture conditions. The generation of runoff in tile drains was only observed above a clear threshold soil moisture content (~0.49 m3·m?3 in the top 10 cm of the soil; above field capacity and close to saturation), indicating that tile discharge responses to precipitation inputs were governed by the available soil‐water storage capacity of the soil. Soil moisture content approached this threshold throughout the non‐growing season (October – April), leading to runoff responses to most events. Concentrations of P in effluent were variable throughout the study but were not correlated with discharge (p > 0.05). However, there were significant relationships between discharge volume (mm) and DRP and TP loads (kg ha?1) for events occurring over the study period (R2 ≥ 0.49, p ≤ 0.001). This research has shown that the hydrologic and biogeochemical responses of tile drains in a sandy loam soil can be predicted to within an order of magnitude from simple hydrometric data such as precipitation and soil moisture once baseline conditions at a site have been determined. Copyright © 2016 John Wiley & Sons, Ltd.
Keywords:phosphorus  tile drains  seasonality  winter  thresholds  metrics
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号