首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Phanerozoic upper crustal tectono-thermal development of basement rocks from central Madagascar: An integrated fission-track and structural study
Authors:B Emmel  J Jacobs  M Kastowski  G Graser
Institution:Fachbereich Geowissenschaften, Universität Bremen, PF 330440, 28334 Bremen, Germany
Abstract:An integrated study of fission-track (FT) dating and structural geology revealed a complex tectono-thermal history preserved in basement rocks of central Madagascar since the amalgamation of Gondwana at the end of the Cambrian. A detailed study of five domains argues for several cooling steps with associated brittle deformations during the separation of Madagascar.Titanite and apatite FT ages range between 483 Ma and 266 Ma and between 460 Ma and 79 Ma, respectively. The titanite FT data indicate that the final cooling after the latest metamorphic overprint was terminated at c. 500 Ma (FC1). A 150 Myr phase of minor cooling (SC2), possibly related to a phase of tectonic quiescence and isostatic compensation, followed episode FC1. Between the Carboniferous and Early Jurassic, when an intracontinental rift developed between East Africa and Madagascar, complex brittle deformation effected the western margin of Madagascar and led to differential cooling of small basement blocks (FC3–FC5). During this period, ductile structural trends were reactivated at the western basement margin and in the centre of the island.A Late Cretaceous thermal event (T1) affected apatite FT data of samples from western–central and the eastern margin of Madagascar. These ages are related to the Madagascar–India/Seychelles break-up, whereby the thermal penetration along the eastern coast was restricted to the west by the Angavo shear zone (AGSZ). The Cretaceous evolution of the eastern margin was associated with minor erosion and was triggered by vertical displacements along brittle structures.
Keywords:Madagascar  Gondwana  Fission-track  Exhumation  Cooling rates
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号