首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Forecasting the effects of global warming on radial growth of subalpine trees at the upper and lower distribution limits in central Japan
Authors:Koichi Takahashi  Isao Okuhara
Institution:1. Department of Biology, Faculty of Science, Shinshu University, Matsumoto, Nagano, 390-8621, Japan
2. Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
3. Graduate School of Science and Technology, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
Abstract:Effects of global warming on radial growth were examined for the subalpine tree species Abies veitchii (1600–2200 m?a.s.l.), A. mariesii (2000–2500 m?a.s.l.) and Betula ermanii (1600–2500 m?a.s.l.) in central Japan, by using dendrochronological techniques. Chronologies of tree-ring widths were examined for the three species and of maximum latewood densities for the two Abies species at their upper and lower distribution limits (total 10 chronologies). We developed multiple regression models to reproduce these chronologies from the monthly mean temperature and sum of precipitation. Of the 10 chronologies, growth-climate relations could not be modeled for tree-ring width chronologies of the three species at their lower distribution limits because of low correlation. Annual mean temperature and annual sum of precipitation will increase about 3 °C and 100 mm, respectively, by 2100 in central Japan, according to 18 climatic change scenarios (6 general circulation models ×3 greenhouse gasses emission scenarios). We predicted tree-ring widths and maximum latewood densities by substituting 18 climatic change scenarios into the growth-climate models. Maximum latewood densities and tree-ring widths of A. mariesii at the upper and lower distribution limits increased by 2100. The rates of the increase tended to be greater for scenarios with more greenhouse gas emission. By contrast, maximum latewood densities of A. veitchii and tree-ring widths of B. ermanii were unchanged by 2100, irrespective of the three greenhouse gas emission scenarios. This study showed that radial growth of the three species responds differently to global warming and their responses are predictable by dendrochronological models.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号