首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oscillatory cosmic-ray shock structures
Authors:G P Zank
Institution:(1) Max-Planck-Institut für Kernphysik, Heidelberg, F.R.G.
Abstract:A multiple scales analysis is used to derive a mixed Burgers-Korteweg-de Vries (BKdV) equation in the long wavelength regime for a two-fluid MHD model used to describe cosmic-ray acceleration by the first-order Fermi process in astrophysical shocks. The BKdV equation describes the time evolution of weak shocks in the theory of diffusive shock acceleration for all possible cosmic-ray pressures. Previous work on weak shocks in the cosmic-ray MHD model has assumed that dissipation alone is sufficient to balance nonlinearity, but, as cosmic-ray pressures become small, the weak shock becomes discontinous. By including Hall current effects into the MHD model, the low cosmic-ray pressure limit leads smoothly into solitary wave behaviour. For low cosmic-ray pressures, the shock has a downstream oscillatory precursor which is smoothed into the standard Taylor shock profile with increasing cosmic-ray pressure. As a by-product of the perturbation analysis, a dissipative KdV equation is derived. In conclusion, dispersive effects on Alfvén waves are discussed and a modulational stability analysis is presented.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号