首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Isotope Geochemistry of Groundwater from Fractured Dolomite Aquifers in Central Slovenia
Authors:Timotej Verbov?ek  Tja?a Kandu?
Institution:1.Department of Geology, Faculty of Natural Sciences and Engineering,University of Ljubljana,Ljubljana,Slovenia;2.Department of Environmental Sciences,Jo?ef Stefan Institute,Ljubljana,Slovenia
Abstract:The hydrogeochemistry and isotope geochemistry of groundwater from 85 wells in fractured dolomite aquifers of Central Slovenia were investigated. This groundwater represents waters strongly influenced by chemical weathering of dolomite with an average of δ13CCARB value of +2.2 ‰. The major groundwater geochemical composition is HCO3 ? > Ca2+ > Mg2+. Several differences in hydrogeochemical properties among the classes of dolomites were observed when they were divided based on their age and sedimentological properties, with a clear distinction of pure dolomites exhibiting high Mg2+/Ca2+ ratios and low Na+, K+ and Si values. Trace element and nutrient concentrations (SO4 2?, NO3 ?) were low, implying that karstic and fractured dolomite aquifers are of good quality to be used as tap water. Groundwater was generally slightly oversaturated with respect to calcite and dolomite, and dissolved CO2 was up to 46 times supersaturated relative to the atmosphere. The isotopic composition of oxygen (δ18OH2O), hydrogen (δDH2O) and tritium ranged from ?10.3 to ?8.4 ‰, from ?68.5 to ?52.7 ‰ and from 3.5 TU to 10.5 TU, respectively. δ18O and δD values fell between the GMWL (Global Meteoric Water Line) and the MMWL (Mediterranean Meteoric Water Line) and indicate recharge from precipitation with little evaporation. The tritium activity in groundwater suggests that groundwater is generally younger than 50 years. δ13CDIC values ranged from ?14.6 to ?9.3 ‰ and indicated groundwater with a contribution of degraded organic matter/dissolved inorganic carbon in the aquifer. The mass balances for groundwater interacting with carbonate rocks suggested that carbonate dissolution contributes from 43.7 to 65.4 % and degradation of organic matter from 34.6 to 56.3 %.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号