首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Floodplain sedimentology of the Squamish River, British Columbia: relevance of element analysis
Authors:GARY J BRIERLEY
Institution:Department of Geography and The Institute for Quaternary Research, Simon Fraser University, Burnaby, British Columbia, Canada, V5A 1S6
Abstract:Element analysis of modern-day floodplains provides a framework for characterizing associations amongst depositional forms, the processes responsible for them and their local depositional environment. From interpretation of the spatial association of elements, mechanisms of floodplain evolution can be analysed. The Squamish River, in southwestern British Columbia, is a high-energy, gravel-based river, which exhibits a distinct downstream gradation in channel planform type. The floodplain sedimentology of this river is evaluated using an element approach. Five elements, defined on the basis of their morphological outline, position within sediment sequences and sedimentological character, describe the floodplain sedimentology: (i) top-stratum, (ii) chute channel; (iii) ridge; (iv) bar platform; (v) basal channel gravels. The sedimentological composition of each element is described. Each of these units relates directly to morphostratigraphic units which make up contemporary bars of the Squamish River. Associations among facies defined at the bedform scale, morphostratigraphic units on bar surfaces and elemental floodplain features are described and explained. The vertical stacking arrangement of elements is analysed in trenches (dug perpendicular to the main channel) and in bank exposures. Two elemental sedimentology models are proposed. In the first model, bar platform sands are discontinuous above basal channel gravels. Chute channel, ridge and proximal topstratum elements form thick sequences above. The second model is characterized by sequences in which distal top-stratum deposits are observed. In these instances, bar platform sands are better preserved beneath the distal top-stratum element, with proximal top-stratum elements above. The applicability of these models is determined primarily by position on the floodplain. Chute channel reworking of floodplain sediments and replacement by top-stratum elements is the dominant process marginal to contemporary bars. Sites in which channel avulsion has resulted in preservation of distal top-stratum deposits in the midsequence of the present-day channel banks determine the occurrence of the second model. Although channel planform style changes down-valley in the study reach from braided to meandering, these two models apply in each reach. It is concluded that processes operative at the element scale, rather than the channel planform scale, determine floodplain sedimentology.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号