首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Predicting US summer precipitation using NCEP Climate Forecast System version 2 initialized by multiple ocean analyses
Authors:Jieshun Zhu  Bohua Huang  Zeng-Zhen Hu  James L Kinter III  Lawrence Marx
Institution:1. Center for Ocean-Land-Atmosphere Studies, Institute of Global Environment and Society, 4041 Powder Mill Road, Suite 302, Calverton, MD, 20705, USA
2. Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, George Mason University, Fairfax, VA, USA
3. Climate Prediction Center, National Centers for Environmental Prediction/NOAA, College Park, MD, USA
Abstract:This study examines the prediction skill of the contiguous United States (CONUS) precipitation in summer, as well as its potential sources using a set of ensemble hindcasts conducted with the National Centers for Environmental Prediction (NCEP) Climate Forecast System version 2 and initialized from four independent ocean analyses. The multiple ocean ensemble mean (MOCN_ESMEAN) hindcasts start from each April for 26 summers (1982–2007), with each oceanic state paired with four atmosphere-land states. A subset of hindcasts from the NCEP CFS Reanalysis and Reforecast (CFSRR) project for the same period, from the same initial month and with the same total ensemble size, is also analyzed. Compared with CFSRR, MOCN_ESMEAN is distinguished by its oceanic ensemble spread that introduces potentially larger perturbations and better spatial representation of the oceanic uncertainty. The prediction skill of the CONUS precipitation in summer shows a similar spatial pattern in both MOCN_ESMEAN and CFSRR, but the results suggested that initialization from multiple ocean analyses may bring more robust signals and additional skills to the seasonal prediction for both sea surface temperature and precipitation. Among the predictable areas for precipitation, the northwestern CONUS (NWUS) is the most robust. A further analysis shows that the enhanced summer precipitation prediction skill in NWUS is mainly associated with the El Niño/Southern Oscillation, with possible influence also from the Pacific Decadal Oscillation. Through this work, we argue that a large ensemble is necessary for precipitation forecast in mid-latitudes, such as the CONUS, and taking into account of the oceanic initial state uncertainty is an efficient way to build such an ensemble.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号