首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantifying threats to groundwater resources in the Republic of Maldives Part II: Recovery from tsunami marine overwash events
Authors:Abdullah A Alsumaiei  Ryan T Bailey
Institution:1. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USAPresent Address: Abdullah A. Alsumaiei, Civil Engineering Department, College of Engineering and Petroleum, Kuwait University, P.O.Box‐5969,13060, Safat, Kuwait;2. Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, CO, USA
Abstract:Marine overwash events are among the most serious short‐term threats to groundwater supply of small coral islands. During such events, seawater can inundate small islands partially or completely, causing salinization of the aquifer. A comprehensive knowledge of freshwater lens recovery is essential for water planners on these islands. In this study, a numerical modelling approach is used to quantify recovery of the freshwater lens on 4 islands of the Maldives after a tsunami‐induced overwash event similar to that experienced from the Indian Ocean earthquake in December 2004. The islands vary in size (0.2 to 10.1 km2) and span the climatic regions of the Maldives. A tested 3‐dimensional SEAWAT groundwater model for each island is used to simulate the recovery process. Recharge rates from historical rainfall data and from global climate models are imposed on each island during the post‐overwash recovery period. The effect of groundwater pumping on lens recovery also is examined. Results show abrupt decrease in fresh groundwater volumes for each island, followed by recovery that is significantly influenced by island size and recharge patterns. Overall, salinization is more widespread on small islands (<1 km2), but recovery is more rapid than for large islands. Between 50% and 90% of lens recovery occurs after 2 years for small islands (<1 km2) whereas only 35% and 55% for large islands. Imposing pumping rates required to sustain the local population lengthened the recovery time between 5% and 15%, with smaller islands having the higher percentage. However, the governing factor on recovery time is the spatial extent of land surface inundation by the overwash event, with wave height and duration of the event having a negligible impact. A strong relationship exists between required recovery time and island surface area, thereby providing a method to determine recovery time for other atoll islands not investigated in this study with similar geologic structure. Our results can be used to aid in managing water resources during the post‐overwash period.
Keywords:atolls  groundwater  island hydrology  overwash  SEAWAT  tsunami
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号