首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The effect of orbital evolution on the Haumea (2003 EL61) collisional family
Authors:Kathryn Volk  Renu Malhotra
Institution:Lunar and Planetary Laboratory, The University of Arizona, Tucson, AZ 85721, USA
Abstract:The Haumea family is currently the only identified collisional family in the Kuiper belt. We numerically simulate the long-term dynamical evolution of the family to estimate a lower limit of the family’s age and to assess how the population of the family and its dynamical clustering are preserved over Gyr timescales. We find that the family is not younger than 100 Myr, and its age is at least 1 Gyr with 95% confidence. We find that for initial velocity dispersions of 50–400 m s?1, approximately 20–45% of the family members are lost to close encounters with Neptune after 3.5 Gyr of orbital evolution. We apply these loss rates to two proposed models for the formation of the Haumea family, a graze-and-merge type collision between two similarly sized, differentiated KBOs or the collisional disruption of a satellite orbiting Haumea. For the graze-and-merge collision model, we calculate that >85% of the expected mass in surviving family members within 150 m s?1 of the collision has been identified, but that one to two times the mass of the known family members remains to be identified at larger velocities. For the satellite-break-up model, we estimate that the currently identified family members account for ~50% of the expected mass of the family. Taking observational incompleteness into account, the observed number of Haumea family members is consistent with either formation scenario at the 1σ level, however both models predict more objects at larger relative velocities (>150 m s?1) than have been identified.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号