首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Composition and structures of the subsurface in the vicinity of Valles Marineris as revealed by central uplifts of impact craters
Authors:Cathy Quantin  Jessica Flahaut  Harold Clenet  Pascal Allemand  Pierre Thomas
Institution:Laboratoire de géologie de Lyon: Terre, Planètes, Environnements, Université Lyon 1, Villeurbanne, Ecole Normale Supérieure de Lyon, Lyon, CNRS, UMR 5276, 2, rue Raphaël Dubois, F-69622 Villeurbanne cedex, France
Abstract:Despite recent efforts from space exploration to sound the martian subsurface with RADAR, the structure of the martian subsurface is still unknown. Major geologic contacts or discontinuities inside the martian crust have not been revealed. Another way to analyze the subsurface is to study rocks that have been exhumed from depth by impact processes. The last martian mission, MRO (Mars Reconnaissance Orbiter), put forth a great deal of effort in targeting the central peaks of impact craters with both of its high resolution instruments: CRISM (Compact Reconnaissance Imaging Spectrometer for Mars) and HiRISE (High Resolution Science Experiment). We analyzed the composition with CRISM and the physical characteristics on HiRISE of the rocks exhumed from depth from 31 impact craters in the vicinity of Valles Marineris. Our analyses revealed the presence at depth of two kinds of material: massive light-toned rocks and intact layers. Exhumed light-toned massive rocks are enriched in low calcium pyroxenes and olivine. Hydrated phases such as smectites and putative serpentine are present and may provide evidence of hydrothermal processes. Some of the rocks may represent portions of the volatile-rich, pre-Noachian martian primitive crust. In the second class of central peaks, exhumed layers are deformed, folded, and fractured. Visible-near infrared (VNIR) spectra suggest that they are composed of a mixture of olivine and high calcium pyroxene associated with hydrated phases. These layers may represent a Noachian volcanic accumulation of up to 18 km due to Tharsis activity. The spatial distribution, as well as the in-depth distribution between the two groups of rocks exhumed, are not random and reveal a major geologic discontinuity below the Tharsis lava plateau. The contact may be vertical over several kilometers depth suggesting the pre-existence of a steep basin (early giant impact or subsidence basin) or sagduction processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号