首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Spatial patterns and storage composition of woody debris in a natural secondary forest dominated by <Emphasis Type="Italic">Pinus tabulaeformis</Emphasis> on Loess Plateau,China
Authors:" target="_blank">Li Gu  " target="_blank">Zhi-wen Gong  Wei-zhong Li
Institution:1.College of Forestry,Northwest A&F University,Yangling,China;2.College of Economics & Management,Northwest A&F University,Yangling,China
Abstract:Woody debris (WD) is an important part of natural Pinus tabulaeformis mixed stands, and it affects the forest ecosystem stability and development. The WD spatial patterns are especially important structural characteristics that can provide insights into forest dynamics. In this paper, the WD storage, WD spatial patterns and WD associations among the main species were examined in the natural secondary forest on Loess Plateau in northwest China. Data were collected in a 1 ha (100 m × 100 m) permanent plot, and all the trees with a diameter at breast height of more than 3 cm were measured and stem-mapped. Ripley’s K functions from the spatial-point-pattern-analysis method were used to analyze the spatial distribution and associations. The results showed that: (1) The total storage of WD was 10.73 t/ha, fallen wood was the main source of WD, and the majority diameters were greater than 20 cm, and in intermediate levels of decay; (2) The overall spatial pattern was closely related to the spatial scale, which exhibited an aggregated pattern on a small scale, and a random pattern on a large scale. The spatial patterns of coarse woody debris also gradually transitioned from an aggregated pattern in fine scales to a random pattern in broader spatial scales, which matched the overall spatial pattern. The spatial intensity was gradually decreased with the increasing diameters, and increased with the decomposition classes; (3) The WD of Pinus tabulaeformis species was negatively associated with Betula platyphylla and Populus davidiana on a small scale but positively associated with these species on a large scale. The spatial pattern and interspecies relations were the results of long-term interactions between the natural secondary forest community and the surrounding natural environment. These findings would provide a scientific basis for the sustainable management and protection of natural secondary forest ecosystems on Loess Plateau.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号