首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hydroclimatic and channel snowpack controls over suspended sediment and grain size transport in a High Arctic catchment
Authors:Dana M McDonald  Scott F Lamoureux
Institution:Department of Geography, Queen's University, Kingston, ON K7L 3N6, Canada
Abstract:Temporal variability in suspended sediment delivery processes was studied during three seasons in a 7·9 km2 catchment at Cape Bounty, Melville Island, Nunavut in the Canadian High Arctic. Discharge was controlled primarily by the magnitude of snowmelt, with limited inputs from ground ice melt and precipitation. Years with greater snowpack non‐linearly increased sediment yield and resulted in seasonal counter‐clockwise hysteresis, while a year with low snowpack resulted in reduced sediment yield and clockwise hysteresis, and indicates that sediment was increasingly available after the onset of streamflow. In addition to the event‐scale hysteresis observed during the nival discharge peak, diurnal clockwise hysteresis was observed during all three seasons and suggests daily exhaustion of sediment supplies. These results indicate that the channel snowpack plays a primary role over sediment accessibility during the nival discharge peak. Similarly, grain size analysis of suspended material in the river showed that the coarsest mean grain size was transported during the early phase of peak nival discharge and indicates that isolated sources of coarse material were being accessed by high velocity flow. Snowpack is present through the peak nival period and conditions sediment availability by isolating channel sediments from high‐energy flow. These results indicate sediment delivery characteristics in small High Arctic catchments reflect complex interactions with channel snowpack and disproportionate responses to flow conditions that differ from glacial and temperate settings. Copyright © 2008 John Wiley & Sons, Ltd.
Keywords:fluvial geomorphology  sediment transport  hysteresis  particle size  snow
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号