首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Scenario of particulate trace metal and metalloid transport during a major flood event inferred from transient geochemical signals
Institution:Université Bordeaux 1, UMR CNRS 5805 EPOC, Avenue des Facultés, F-33405 Talence Cedex, France
Abstract:High-resolution sampling (every 3 h) of SPM was performed during a major flood event in a heterogeneous, medium scale watershed of the Garonne-Gironde fluvial-estuarine system (the Lot River; A = 10,700 km2; Q = 151 m3/s). Particulate metal and metalloid (Cd, Zn, Pb, Co, Cr, Ni, Mo, V, U, As, Sb, Th) concentrations were compared with monthly data of the same site (Temple site) obtained during 1999–2002. During the flood event, suspended particulate matter (SPM) concentrations closely followed river discharge with a maximum value (1530 mg/L) coinciding with the discharge peak (2970 m3/s). Trace metal/metalloid concentrations showed significant temporal variations and very contrasted responses. Particulate concentrations were similar to baseline values at the beginning of the flood and mostly increased during the event, showing anticlockwise and complex shape hystereses. Comparison of SPM yield (440,000 t) and particulate metal/metalloid fluxes during the flood with annual fluxes (1999–2002) highlights the great importance of major flood events in fluvial transport. Adequate sampling frequency during floods is necessary for reliable annual flux estimates and provides geochemical signals that may greatly improve our understanding of fluvial transport processes. The scenario of SPM and metal and metalloid transport during the flood are reconstructed by combining variations of Zn, Cd and Sb concentrations, concentration ratios (e.g. Zn/Cd, As/Th, Cd/Th) and hysteresis loops. Changes in SPM and metal/metalloid transport during distinct key stages of the flood were attributed to successive dominance of different water masses transporting material from different sources (e.g. industrial point source, bed sediment from reservoirs, plain erosion). Flood management (dam flushing) clearly enhanced the remobilization of up to 30-a old polluted sediment from reservoir lakes. Sediment remobilization accounted for ~185,000 t of SPM (i.e. 42% of the total SPM fluxes during the flood) and strongly contributed to particulate metal/metalloid transport for Cd (90%), Zn (83%) and Pb (61%). Therefore, flood management needs to be taken into consideration in future models for erosion and pollutant transport.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号