首页 | 本学科首页   官方微博 | 高级检索  
     检索      

GPS超长基线解算的误差特性与精度分析
引用本文:曹士龙,刘根友,王生亮,高铭,尹翔飞.GPS超长基线解算的误差特性与精度分析[J].武汉大学学报(信息科学版),2023,48(2):260-267.
作者姓名:曹士龙  刘根友  王生亮  高铭  尹翔飞
作者单位:1.中国科学院精密测量科学与技术创新研究院大地测量与地球动力学国家重点实验室, 湖北 武汉, 430077
基金项目:国家重点研发计划2016YFB0501900国家自然科学基金41774017国家自然科学基金41621091
摘    要:基于单基站的超长基线定位技术在地壳形变监测、高精度授时等领域具有广泛应用,但仍有诸多因素制约着超长基线解算精度。从观测方程出发,利用单差观测值对长(超长)基线(146~1 724 km)解算中的卫星轨道误差、对流层延迟误差、地球潮汐误差和相位缠绕误差等误差特性进行了详细分析。分析结果表明,当基线小于500 km时广播星历误差可忽略不计;超过500 km时需要采用精密星历, 同时需要考虑地球潮汐误差的影响;利用参数估计法同时估计基线两端的天顶对流层延迟误差可获得1~2 cm精度; 相位缠绕误差对基线小于2 000 km的解算影响可忽略。基于估计天顶对流层延迟的方法解算了5条长(超长)基线(146 km、491 km、837 km、1 043 km和1 724 km)。实验结果表明,当基线小于500 km时,采用广播星历可获得水平方向优于0.05 m、高程方向优于0.08 m的定位精度;当基线小于2 000 km时,采用超快速精密星历可获得水平方向优于0.025 m、高程方向优于0.055 m的定位精度。解算的初始收敛时间随着基线长度增加而缩短。

关 键 词:超长基线    天顶对流层延迟    地球固体潮    相位缠绕
收稿时间:2021-03-19

Bias Characteristics and Accuracy Analysis of GPS Ultra-Long Baseline Solution
Institution:1.State Key Laboratory of Geodesy and Earth's Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China2.College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:  Objectives  Considering the advantages of low cost, simple algorithm model and high accuracy, the ultra-long baseline positioning technology was widely used in the fields of crustal deformation monitoring and high-precision timing. However, there are still many factors that may reduce the accuracy of the ultra-long baseline solution, such as satellite orbit error, tropospheric delay error and solid earth tide, etc.  Methods  In this contribution, characteristics of various errors and bias (such as broadcast ephemeris orbit error, tropospheric delay error, earth tide and phase windup) were analyzed based on ionosphere-free combination model. The rule of error changing with baseline length was analyzed using single difference observations of long(ultra-long) baselines (146-1 724 km).  Results  The results show that broadcast ephemeris error could be neglected while baseline is less than 500 km. When baseline length exceeded 500 km, precise ephemeris was needed to reduce the influence of orbital errors on positioning. The accuracy of the zenith tropospheric delay calculated by GPT2+Saastamoninen model ranged from centimeter to decimetre, and the method of simultaneously estimating zenith tropospheric delays at both stations could provide accuracy of 1-2 cm. Compared with the horizontal direction, the vertical direction of long baseline was more significantly affected by solid Earth tides which must be corrected in the solution of long baseline. Phase wind-up error could be neglected while baseline is less than 2 000 km.  Conclusions  The experimental results of five long(ultra-long) baselines (146 km, 491 km, 837 km, 1 043 km and 1 724 km) solutions were presented using estimating zenith tropospheric delays at both stations of baseline. While baseline is less than 500 km, the positioning precision based on broadcast ephemeris is better than 0.05 m and 0.08 m in horizontal and vertical direction, respectively. While baseline is less than 2 000 km, the positioning precision based on ultra-rapid precise ephemeris is better than 0.025 m and 0.055 m in horizontal and vertical directions, respectively. The initial convergence time of the baseline solution decreased as the lengths of baseline increased.
Keywords:
点击此处可从《武汉大学学报(信息科学版)》浏览原始摘要信息
点击此处可从《武汉大学学报(信息科学版)》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号