首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Performance characteristics of a conceptual ring-shaped spar-type VLFS with double-layered perforated-wall breakwater
Institution:1. State Key Laboratory of Ocean Engineering, School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China;2. Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration, Shanghai Jiao Tong University, Shanghai, 200240, China;3. Department of Naval Architecture and Marine Engineering, University of Strathclyde, Glasgow, G11XQ, United Kingdom;1. Faculty of Technology and Maritime Science, University of Southeast Norway, Tønsberg, Norway;2. Department of Mathematical Sciences and Technology, Norwegian University of Life Sciences, Ås, Norway;1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;2. School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom;1. State Key Laboratory of Ocean Engineering, Shanghai Jiao Tong University, Shanghai, China;2. School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne NE1 7RU, United Kingdom
Abstract:A ring-shaped spar-type Very Large Floating Structure (VLFS) is proposed as an intermediate base for supporting deepwater resource exploitation far away from the coast line. The proposed VLFS is composed of eight rigidly connected deep-draft spar-type modules and an inside harbor. A double-layered perforated-wall breakwater is vertically attached to the VLFS and pierces through the water surface to attenuate the wave energy in the inside harbor. The hydrodynamic performance characteristics of the ring-shaped VLFS was experimentally evaluated in the present study, focusing on the motion responses, wave elevations, and wave run-ups. The natural periods of the motions in vertical plane were determined to be larger than 40 s, which is much larger than common wave periods. This enhanced the motion performance in vertical plane and afforded favorable habitation and operation condition on the VLFS. A large surge damping was induced by the vertical breakwater, which tended to significantly affect the surge and pitch motions, but had a negligible effect on the heave motion. The component frequencies of the wave elevations in the inside harbor and the wave run-ups were identical with those of the incident waves. The wave attenuation was frequency-dependent and effective for the common wave frequencies, with a smaller loss coefficient observed in higher sea state. The wave attenuation and wave run-ups tended to improve in the absence of the leeward walls.
Keywords:Very Large Floating Structure  Breakwater  Motion response  Wave attenuation  Wave run-up
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号