首页 | 本学科首页   官方微博 | 高级检索  
     检索      


BLOCK ROTATIONS AT THE NORTHERN EDGE OF INDIA (SPITI,N-INDIA) AND THEIR CONTINUATION TO THE EAST (MALARI, N-INDIA)-REGIONAL SIGNIFICANCE FOR THE TECTONIC DEVELOPMENT OF THE TETHYAN HIMALAYAS
Authors:ESchill  
Institution:E.Schill\ 1,E.Appel\ 1,O.Zeh\ 1,V.Singh\ 2
Abstract:In carboniferous and triassic metacarbonates (anchizone to lower greenschist facies) of the Tethyan Himalayas the characteristic remanent magnetisations are carried by magnetite (ChRM\-1) and pyrrhotite (ChRM\-2;Klootwijk & Bingham,1980;Appel et al.,1991 & 1995;Schill et al.,1999).Magnetite may carry a primary remanent magnetisation whereas the pyrrhotite component is secondary and related to the last cooling event below 300℃. Pyrrhotite is formed in marly carbonates during low\|grade metamorphism.In Spiti the last cooling is represented by an 40 Ar/ 39 Ar age of 42~45Ma (Wiesmayr & Grasemann,1999).Five locations were sampled in the Spiti valley (Fig.1).Besides a present earth field direction,both remanent components (ChRM 1+2 ) are present in single specimens.The contribution to the total NRM is around 30% for the ChRM\-2 (coercivity of 20~100mT) and only around 8% for the ChRM\-2 (unblocking temperature of 250~330℃).Despite of the contribution stable remanence directions could be obtained for the ChRM\-2.For all sampling locations well grouping overall mean directions were obtained (Table 1,Fig.1).Results from Losar and the lower Pin valley are preliminary.They were estimated by great circle analyses or by taking the residual component after AF\|demagnetisation. Clockwise block rotations of around 10~40° in respect to stable India since 42 Ma are calculated by using the apparent polar wander path of Besse & Courtillot (1991).The α 95 \|angles show no overlapping (Fig.1 small figure).Therefore local rotations are not negligible.
Keywords:palaeomagnetism  Tethys Himalayas  oroclinal bending  block rotation
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号