首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamic simulation of littoral zone habitats in low Chesapeake Bay. II. Seagrass habitat primary production and water quality relationships
Authors:Christopher P Buzzelli  Richard L Wetzel  Mark B Meyers
Institution:1. College of William and Mary, School of Marine Science, 23062, Gloucester Point, Virginia
3. Hydroqual, Inc., 1 Lethbridge Plaza, 07430, Mahwah, New Jersey
Abstract:Seagrasses are indicators of ecosystem state because they are sensitive to variations in water composition and clarity resulting from watershed-level impacts. A simulation model designed to studyZostera marina (eelgrass) habitat dynamics in a variable littoral zone environment was used to address the potential ecological responses to eutrophication in lower Chesapeake Bay. The adjacent channel boundary environment is a source of dissolved and particulate materials to the littoral zone. In the simulations, concentrations of key water quality variables in the adjacent estuarine channel boundary were either halved or doubled relative to the base case to investigate light versus nitrogen effects. The role of the seagrass meadow in littoral zone carbon and nitrogen dynamics was evaluated when meadow size was changed in the model. Particulate and dissolved organic carbon accounted for 83% of the submarine light attenuation in the seagrass meadow. In all model runs, the water column concentrations of chlorophylla and dissolved inorganic nitrogen (DIN) were below the habitat criteria proposed as critical to seagrass survival. Eelgrass community production was carefully regulated by the interactive effects of light, nitrogen, and grazing on epiphyte growth. Increased eelgrass coverage in the littoral zone led to a simulated doubling of ecosystem primary production but reduced the fraction of production by planktonic and sediment microalgae. The simulation model presented here demonstrated the importance of material input from the channel in littoral zone biogeochemical dynamics. Submarine ligh regulated primary production more strongly than inorganic nitrogen concentrations in the model. External DIN concentrations influenced seagrass survival indirectly: enrichment stimulated growth of epiphytes and phytoplankton and promoted shading of the seagras leaf. The model was based upon a unimpacted ecosystem and deteriorated water quality negatively influenced primary production greater than the increases triggered by improved condition. Increased material loading to the littoral zone reduced submarine light availability, increased phytoplankton production, lowered ecosystem production, and reduced subtidal vegetated habitat. This simulation model of the estuarine littoral zone model combines hydrodynamics, biogeochemical sources and sinks, and living resources in order to better understand structure, function, and change in aquatic ecosystems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号