首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于HAFMM的无射线追踪跨孔雷达走时层析成像
引用本文:王飞,刘四新,曲昕馨,李宏卿,王元新,吴俊军.基于HAFMM的无射线追踪跨孔雷达走时层析成像[J].地球物理学报,2013,56(11):3896-3907.
作者姓名:王飞  刘四新  曲昕馨  李宏卿  王元新  吴俊军
作者单位:1. 吉林大学 地球探测科学与技术学院, 长春 130026;2. 中国石油集团东方地球物理勘探有限责任公司 新兴物探开发处, 河北涿州 072751
基金项目:国家自然科学基金(40874043,41074076);国家高技术研究发展计划(863计划)(2013AA064603);中国石油集团东方地球物理公司中青年科技创新基金项目(11-06-2013)资助
摘    要:本文使用最小二乘线性迭代反演方法对跨孔雷达直达波初至时数据进行反演,每次迭代过程中,用有限差分法求解走时程函方程,并用高精度快速推进方法(HAFMM)进行波前扩展,通过追踪波前避免了进行射线追踪.为了验证该方案,我们对三组合成数据进行了测试,分析了单位矩阵算子、一阶差分算子和拉普拉斯算子等三种不同模型参数加权算子对模型的约束和平滑效果;讨论了FMM和HAFMM对反演精度的影响;测试了LSQR,GMRES和BICGSTAB等三种矩阵反演算法的反演效果.此外,我们还对一组野外实测数据进行了反演,对比了基于本方案以及基于平直射线追踪和弯曲射线追踪的走时层析成像反演效果.对比分析结果表明,使用拉普拉斯算子和HAFMM进行反演能较好地进行目标体重建,而三种矩阵反演方法对反演效果的影响差别不大;并且通过对波前等时线图的分析可以定性地判断异常体的性质和位置;而在对实测数据目标体的重建上,本方案能达到甚至优于弯曲射线算法的重建效果.

关 键 词:跨孔雷达  迭代线性反演  程函方程  有限差分  HAFMM  层析成像  
收稿时间:2012-12-27

Crosshole radar traveltime tomography without ray tracing using the high accuracy fast marching method
WANG Fei,LIU Si-Xin,QU Xin-Xin,LI Hong-Qing,WANG Yuan-Xin,WU Jun-Jun.Crosshole radar traveltime tomography without ray tracing using the high accuracy fast marching method[J].Chinese Journal of Geophysics,2013,56(11):3896-3907.
Authors:WANG Fei  LIU Si-Xin  QU Xin-Xin  LI Hong-Qing  WANG Yuan-Xin  WU Jun-Jun
Institution:1. College of Geo-exploration Science & Technology, Jilin University, Changchun 130026, China;2. BGP Inc., China National Petroleum Corporation, Hebei Zhuozhou 072751, China
Abstract:We perform a least square iteratively linearized inversion method for the crosshole radar traveltime tomography by using the observed first arrival data. In each iteration process, traveltimes are calculated by solving the traveltimes eikonal equation using the finite difference method and wavefront expansion is achieved by using the High Accuracy Fast Marching Method (HAFMM), in other words, traveltimes are achieved by tracing wavefronts instead of rays. We test the suggested method on three assumed physical models with abnormal velocity areas. In model 1, three types of model parameter weighting matrix are introduced. In model 2, both FMM (Fast Marching Method) and HAFMM are considered to improve the accuracy of the inversion. In model 3, we also analyze three types of matrix inversion method, respectively. We also test our algorithm on a field data set from the Xiuyan giant jade, and we compared our scheme for the field data with the one obtained by a straight ray-tracing-based algorithm and the one obtained by a curve ray-tracing-based algorithm, respectively. The comparison results indicated that the reconstruction using the Laplace operator and HAFMM at the same time can get the best result, and there is almost no difference for the inversion result by using each one of the three types of matrix inversion method. And the wavefront traveltimes contour line of the synthetic data model implied the features and positions of the anomalous bodies. By comparison with the straight ray-tracing-based algorithm and curve ray-tracing-based algorithm, our scheme is able to generate a solution better than the one resulting from a curve ray-based scheme.
Keywords:Crosshole radar  Iteratively linearized inversion  Eikonal equation  Finite difference  HAFMM  Tomography
本文献已被 CNKI 等数据库收录!
点击此处可从《地球物理学报》浏览原始摘要信息
点击此处可从《地球物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号