首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of hydrogen on the melting temperature of FeS at high pressure: Implications for the core of Ganymede
Authors:Yuki Shibazaki  Eiji Ohtani  Hidenori Terasaki  Ryuji Tateyama  Tatsuya Sakamaki  Taku Tsuchiya  Ken-ichi Funakoshi
Institution:1. Department of Earth and Planetary Material Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan;2. Geodynamics Research Center, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan;3. Japan Synchrotron Radiation Research Institute, 1-1-1 Kouto, Sayo 679-5198, Japan;1. Center for the Study of Matters at Extreme Conditions and Department of Mechanical and Materials Engineering, Florida International University, Miami, FL 33199, USA;2. Center for the High Pressure Science and Technology Advanced Research, Jilin University, Changchun 130021, China;3. Mineral Physics Institute and Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA;4. Center for Advanced Radiation Sources, The University of Chicago, Chicago, IL 60637, USA;5. Department of Geology and Geophysics, Yale University, New Haven, CT 06511, USA;1. Department of Earth and Planetary Sciences, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro, Tokyo 152-8551, Japan;2. Institute for Study of the Earth''s Interior, Okayama University, 827 Yamada, Misasa, Tottori 682-0193, Japan;3. Senior Research Fellow Center, Ehime-University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan;4. Geodynamics Research Center, Ehime-University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan;5. Bayerisches Geoinstitut, Universität Bayreuth, D-95440 Bayreuth, Germany;6. Japan Synchrotron Radiation Institute, 1-1-1 Koto, Sayo, Hyogo 679-5198, Japan;1. Institut de Minéralogie, de Physique des Matériaux, et de Cosmochimie (IMPMC), Sorbonne Universités – UPMC, UMR CNRS, 7590, Muséum National d''Histoire Naturelle, IRD UMR 206, F-75005 Paris, France;2. Laboratoire Magmas et Volcans, CNRS-OPGC-IRD, Université Blaise Pascal, Clermont-Ferrand, France;3. Materials Dynamics Laboratory, RIKEN SPring-8 Center, RIKEN, Hyogo 679-5148, Japan;4. Department of Physics, Kumamoto University, Kumamoto 860-8555, Japan;5. Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, F-38000 Grenoble, France;6. Synchrotron Soleil, L''Orme des Merisiers, Saint Aubin, France;7. School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen''s Road, Bristol, BS8 1RJ, UK;8. Institut de Physique du Globe de Paris, Université Paris 7, F-75005 Paris, France;9. European Synchrotron Radiation Facility, Grenoble, France;1. University of Edinburgh School of Geosciences, Grant Institute, King’s Buildings, West Mains Road, Edinburgh, UK;2. Centre for Science at Extreme Conditions (CSEC), King’s Buildings, West Mains Rd, Edinburgh, UK;3. Manchester X-ray Imaging Facility, School of Materials, University of Manchester, Oxford Road, Manchester M13 9PL, UK;4. Institut de Minéralogie et de Physique des Milieux Condensés, UMR7590, Université Pierre et Marie Curie and CNRS, Paris, France;5. Department of Geology, University of Maryland, College Park, MD 20742, USA;6. Lab. De Géologie de Lyon, UMR5276, Université Claude Bernard Lyon 1, ENS de Lyon and CNRS, Villeurbanne, France;7. Department of Earth, Ocean and Ecological Sciences, School of Environmental Sciences, University of Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK;8. Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EQ, UK;1. Sorbonne Université, Muséum National d''Histoire Naturelle, UMR CNRS 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, IMPMC, 75005 Paris, France;2. Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, IRD, Université Gustave Eiffel, ISTerre, 38000 Grenoble, France;3. Synchrotron SOLEIL, L''Orme de Merisiers, Saint Aubin-BP48, 91192 Gif-sur-Yvette, France;4. Royal Observatory of Belgium, Avenue Circulaire 3, B-1180 Brussels, Belgium;5. Laboratoire Magmas et Volcans CNRS, IRD, OPGC, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;6. Univ. Lille, CNRS, INRAE, Centrale Lille, UMR 8207 - UMET - Unité Matériaux et Transformations, F-59000 Lille, France;7. Institute for Planetary Materials, Okayama University, Misasa, Tottori 682-0193, Japan;8. Department of Earth and Space Science, Graduate School for Science, Osaka University, Toyonaka, Osaka 560-0043, Japan;9. Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550-9698, USA;1. Laboratory of Ocean–Earth Life Evolution Research, Japan Agency for Marine–Earth Science and Technology, Yokosuka, Kanagawa 237-0061, Japan;2. Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8551, Japan;3. Japan Synchrotron Radiation Research Institute, Sayo-cho, Hyogo 679-5198, Japan
Abstract:We have carried out in situ X-ray diffraction experiments on the FeS–H system up to 16.5 GPa and 1723 K using a Kawai-type multianvil high-pressure apparatus employing synchrotron X-ray radiation. Hydrogen was supplied to FeS from the thermal decomposition of LiAlH4, and FeSHx was formed at high pressures and temperatures. The melting temperature and phase relationships of FeSHx were determined based on in situ powder X-ray diffraction data. The melting temperature of FeSHx was reduced by 150–250 K comparing with that of pure FeS. The hydrogen concentration in FeSHx was determined to be x = 0.2–0.4 just before melting occurred between 3.0 and 16.5 GPa. It is considered that sulfur is the major light element in the core of Ganymede, one of the Galilean satellites of Jupiter. Although the interior of Ganymede is differentiated today, the silicate rock and the iron alloy mixed with H2O, and the iron alloy could react with H2O (as ice or water) or the hydrous silicate before the differentiation occurred in an early period, resulting in a formation of iron hydride. Therefore, Ganymede's core may be composed of an Fe–S–H system. According to our results, hydrogen dissolved in Ganymede's core lowers the melting temperature of the core composition, and so today, the core could have solid FeSHx inner core and liquid FeHx–FeSHx outer core and the present core temperature is considered to be relatively low.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号