首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Changing compositions in the Iceland plume; Isotopic and elemental constraints from the Paleogene Faroe flood basalts
Authors:Nina Søager  Paul Martin Holm
Institution:1. EPMA Lab, Department of Earth Sciences, I.I.T. Bombay, Powai, Mumbai 400076, India;2. Institut für Mineralogie, University of Münster, Münster 48149, Germany;3. Deep & Early Earth Processes (DEEP) Research Group, Department of Geology, University of Johannesburg, Auckland Park 2006, South Africa;4. Geological Survey of India, Bandlaguda, Hyderabad 500068, India;5. C-52, Gayatri Nagar, Raipur, India;1. Department of Lithospheric Research, University of Vienna, Althanstr. 14, 1090, Wien, Austria;2. Institute of Geological Sciences, University of Wroc?aw pl. M. Borna 9, 50-205 Wroc?aw, Poland;3. Department of Earth and Planetary Sciences, Birkbeck University of London, Malet St., London WC1E 7HX, UK
Abstract:Elemental and Sr, Nd, Hf and high precision Pb isotopic data are presented from 59 low-Ti and high-Ti lavas from the syn-break up part of the Faroe Flood Basalt Province. The depleted MORB-like low-Ti lavas erupted in the rift zone between the Faroe Islands and central East Greenland around the time of break up of the North Atlantic have isotopic end-member compositions different from the depleted Iceland lavas. We suggest that the main low-Ti mantle component is NAEM (North Atlantic End-Member (Ellam and Stuart, 2000, J. Petrol. 41, 919) and that the 207Pb/204Pb value of the component should be 15.35 and εHf = + 16.5. NAEM is the main depleted component in the early Iceland plume. This is supported by high mantle potential temperatures (up to 1550 °C) calculated for the source of the low-Ti basalts. The unique mantle isotopic composition of NAEM with low 206Pb/204Pb (17.5) and Δ7/4Pb (? 3.8) precludes a derivation from recycled MORB lithosphere. Instead we suggest that NAEM represents a plume component of recycled depleted Archean lithospheric mantle that was further depleted ~ 500 Ma ago, possibly in connection with the recycling process. Two other isotopic end-members are required to explain the variation of the Faroe low-Ti basalts: (1) The Faroe depleted component (FDC), with 87Sr/86Sr = 0.7025, εNd = + 11, εHf = + 19.5, 206Pb/204Pb = 18.2, 207Pb/204Pb = 15.454 and 208Pb/204Pb = 37.75, which is similar in composition to some Atlantic MORB and is regarded as a local upper mantle source. (2) An enriched EM-type component similar in geochemistry to the Icelandic Öræfajökull lavas. This component is believed to be recycled pelagic sediments in the plume but it can alternatively be a local crustal or lithospheric mantle component. The enriched Faroe high-Ti lavas erupted inland from the rift have isotopic compositions very similar to the enriched Icelandic neo-volcanics and these lava suites apparently share the two enriched plume end-members IE1 and IE2 (Geochim. Cosmochim. Acta 68, 2, 2004). The lack of mixing between high and low-Ti melts at the time of break up, is explained by a zoned plume where only low-Ti sources were present beneath the rift zone surrounded by high-Ti sources on both sides of the rift. The enriched plume components in the high-Ti lava sequences on the Faroe Islands and central East Greenland changed rapidly on a ka-scale which implies, from geophysical modelling, that this area was positioned above the center of the plume, and that the Iceland plume was centered under the Atlantic ridge already from the Paleocene.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号