首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Equivalent time-average and effective medium for periodic layers
Authors:Alexey Stovas  Bjorn Ursin
Institution:Norwegian University of Science and Technology (NTNU), Department of Petroleum Engineering and Applied Geophysics, S.P. Andersensvei 15A, NO-7491 Trondheim, Norway
Abstract:The propagation of acoustic waves through a periodic layered medium is analyzed by an eigenvalue decomposition of the propagator matrix. This reveals how the velocity and attenuation of the layered medium vary as function of the periodic structure, material parameters and frequency. There are two important parameters which control the wave propagation in the periodic medium: the reflection coefficient and the ratio between one‐way traveltimes of the two parts of the cyclic layered medium. For low frequencies (large values of wavelength to layer thickness), the layered structure behaves as an effective medium, then there is a transition zone, and for higher frequencies (small values of wavelength to layer thickness) the medium is described by the time‐average velocity. In this paper we mostly concentrate on the transition zone between an effective medium and time‐average medium regimes. The width of the transition zone increases with larger values of the reflection coefficient. The transition zone corresponds to a blocking regime for which the transmission response of the layered structure is close to zero. For even higher frequencies, the time‐average medium is replaced by a new transition zone, and then again a time‐average medium. This pattern is periodically repeated with higher frequencies. For small values of the reflection coefficient, the transition between effective medium and time‐average medium occurs around a value of wavelength to layer thickness equal to 4.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号