首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fourier analysis of the light curves of eclipsing variables,X
Authors:Zdeněk Kopal
Institution:(1) Department of Astronomy, University of Manchester, England;(2) Present address: Naval Research Laboratory, Washington, D.C., U.S.A.
Abstract:The aim of the present paper will be to develop methods for computation of the Fourier transforms of the light curves of eclipsing variables — due to any type of eclipses — as a function of a continuous frequency variablev. For light curves which are symmetrical with respect to the conjunctions (but only then) these transforms prove to be real functions ofv, and expressible as rapidly convergent expansions in terms of the momentsA 2m+1 of the light curves of odd orders. The transforms are found to be strongly peaked in the low-frequency domain (attaining a maximum forv=0), and become numerically insignificant forv>3. This is even more true of their power spectra.The odd momentsA 2m+1 — not encountered so far in our previous papers — are shown in Section 3 of the present communication to be expressible as infinite series in terms of the even momentsA 2m well known to us from Papers I–IV; and polynomial expressions are developed for approximating them to any desired degree of accuracy. The numerical efficiency of such expressions will be tested in Section 4, by application to a practical case, with satisfactory results.Lastly, in Section 5, an appeal to the Wiener-Khinchin theorem (relating the power spectra with autocorrelation function of the light curves) and Parseval's theorem on Fourier series will enable us to extend our previous methods for a specification of quadratic moments of the light curves in terms of the linear ones.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号