首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantitative analogue flume-model study of river–shelf systems: principles and verification exemplified by the Late Quaternary Colorado river–delta evolution
Authors:M W I M van Heijst  G Postma  X D Meijer  J N Snow†  J B Anderson†
Institution:Faculty of Earth Sciences, Utrecht University, PO Box 80021, 3508 TA, Utrecht, The Netherlands. E-mail:; Department of Geology &Geophysics, Rice University, PO Box 1892, Houston, TX 77005, USA. E-mail:
Abstract:ABSTRACT Physical modelling of clastic sedimentary systems over geological time spans has to resort to analogue modelling since full scaling cannot be achieved within the spatial and temporal restrictions that are imposed by a laboratory set‐up. Such analogue models are suitable for systematic investigation of a sedimentary system's sensitivity to allocyclic changes by isolating governing parameters. Until now, analogue models of landscape evolution were mainly qualitative in nature. In this paper, we present a quantitative approach. The quantitative experimental results are verified and discussed by comparison with high‐resolution data from the Colorado river–shelf system of the Texas shelf that we used as a prototype. The model's dimensions are proportionally scaled to the prototype, except for a vertical exaggeration. Time is scaled using a Basin Response factor to maintain a similar ratio between the period of change and the system's equilibrium time for model and prototype. A Basin Fill factor was used to compare the ratio between the time‐averaged sedimentation rate and the rate of change in accommodation space of model and prototype. The flume‐model results are in the form of sediment budgets that are related to shelf cannibalism and fluvial supply, which are compared with the ancestral Colorado river–delta evolution of the last 40 kyr. Model and prototype have similarities in delta evolution in response to one cycle of sea‐level change. With sea‐level change as the isolated variable, the flume model generates a significant supply pulse caused by headward erosion of the shelf in response to the sea‐level fall. This pulse adds to the yield of the hinterland. The supply induced by sea‐level change persists during the early rise, although its rate declines. A similar trend is observed on the east Texas shelf. We argue that shelfal and fluvial degradation cycles induced by sea‐level changes can significantly influence the timing and amount of sediment supply to basins and must therefore be taken into consideration.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号