首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical analyses of tunnel collapse and slope stability assessment under different filling material loadings: a case study
Authors:Zeinab?Aliabadian  Email author" target="_blank">Mansour?SharafisafaEmail author  Mohammad?Nazemi  Alireza?Rezazadeh?Khamene
Institution:1.Department of Mining and Metallurgy Engineering,Amirkabir University of Technology,Tehran,Iran;2.Faculty of Mining Engineering,Azad Southern Branch University,Tehran,Iran
Abstract:To transfer the excess water from Sabzkouh River in central Iran to cities beyond the river, a mechanized tunnel is being excavated. During construction and support installation in the first 100 m, tunnel roof collapse occurred and was followed by ground settlement, so that a cavity was developed in ground surface. The cavity had to be filled in a short time before rainy season, since the water flow through cavity could extend the collapse area in both tunnel roof and ground surface. In order to fill the cavity, some filling methods with different materials consist of in situ soil, lightweight concrete, and pumice aggregate lightweight concrete (PALWC) were suggested. To analyse the load distribution and minimize the costs, a three-dimensional analysis was carried out. Tunnel support system was simulated numerically to further evaluate loading state on support system under different material loadings. Mohr-Coulomb material model was used to allow material failure. The modelling procedure was based on actual construction procedure. Firstly, in situ model was modelled without any excavation and was run to establish pre-stresses and displacement, then slope was supported, the tunnel was excavated and support was installed and finally cavity was simulated. The numerical results show that filling the cavity with soil will result in over loading on the support system and leads to instability of the slope. Other two suggested filling materials have acceptable load on support system, but PALWC was selected as the best filling material having minimum loading and guarantees slope stability.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号