首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Modeling of the solubility of a one-component H2O or CO2 fluid in silicate liquids
Authors:Paolo Papale
Institution:(1) Centro di Studio per la Geos logia Strutturale e Dinamica dell' Appennino Via S. Maria 53, I-56126 Pisa, Italy, IT
Abstract:The modeling of the solubility of water and carbon dioxide in silicate liquids (flash problem) is performed by assuming mechanical, thermal, and chemical equilibrium between the liquid magma and the gas phase. The liquid phase is treated as a mixture of ten silicate components + H2O or CO2, and the gas phase as a pure H2O or CO2. A general model for the solubility of a volatile component in a liquid is adopted. This requires the definition of a mixing equation for the excess Gibbs free energy of the liquid phase and an appropriate reference state for the dissolved volatile. To constrain the model parameters and identify the most appropriate form of the solubility equations for each dissolved volatile, a large number of experimental solubility determinations (640 for H2O and 263 for CO2) have been used. These determinations cover a large region of the P-T-composition space of interest. The resultant water and carbon dioxide solubility models differ in that the water model is regular and isometric, and the carbon dioxide model is regular and non-isometric. This difference is consistent with the different speciation modalities of the two volatiles in the silicate liquids, producing a composition-independent partial molar volume of dissolved water and a composition-dependent partial molar volume of dissolved carbon dioxide. The H2O solubility model may be applied to natural magmas of virtually any composition in the P-T range 0.1 MPa–1 GPa and > 1000 K, whereas the CO2 solubility model may be applied to several GPa pressures. The general consistency of the water solubility data and their relatively large number as compared to the calibrated model parameters (11) contrast with the large inconsistencies of the carbon dioxide solubility determinations and their low number with respect to the CO2 model parameters (22). As a result, most of the solubility data in the database are reproduced within 10% of approximation in the case of water, and 30% in the case of carbon dioxide. When compared with the experimental data, the H2O and CO2 solubility models correctly predict many features of the saturation surface in the P-T-composition space, including the change from retrograde to prograde H2O solubility in albitic liquids with increasing pressure, the so-called alkali effect, the increasing CO2 solubility with increasing degree of silica undersaturation, the Henrian behavior of CO2 in most silicate liquids up to about 30–50 MPa, and the proportionality between the fugacity in the gas phase, or the saturation activity in the liquid phase, and the square of the mole fraction of the dissolved volatile found in some unrelated silicate liquid compositions. Received: 21 August 1995 / Accepted: 8 July 1996
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号