首页 | 本学科首页   官方微博 | 高级检索  
     检索      

What Kind of Initial Errors Cause the Severest Prediction Uncertainty of El Nino in Zebiak-Cane Model
作者单位:State Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG) Institute of Atmospheric Physics,Chinese Academy of Sciences,State Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics(LASG),Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,Beijing 100029
摘    要:With the Zebiak-Cane(ZC)model,the initial error that has the largest effect on ENSO prediction is explored by conditional nonlinear optimal perturbation(CNOP).The results demonstrate that CNOP-type errors cause the largest prediction error of ENSO in the ZC model.By analyzing the behavior of CNOP- type errors,we find that for the normal states and the relatively weak El Nino events in the ZC model,the predictions tend to yield false alarms due to the uncertainties caused by CNOP.For the relatively strong El Nino events,the ZC model largely underestimates their intensities.Also,our results suggest that the error growth of El Nino in the ZC model depends on the phases of both the annual cycle and ENSO.The condition during northern spring and summer is most favorable for the error growth.The ENSO prediction bestriding these two seasons may be the most diffcult.A linear singular vector(LSV)approach is also used to estimate the error growth of ENSO,but it underestimates the prediction uncertainties of ENSO in the ZC model.This result indicates that the different initial errors cause different amplitudes of prediction errors though they have same magnitudes.CNOP yields the severest prediction uncertainty.That is to say,the prediction skill of ENSO is closely related to the types of initial error.This finding illustrates a theoretical basis of data assimilation.It is expected that a data assimilation method can filter the initial errors related to CNOP and improve the ENSO forecast skill.

本文献已被 CNKI 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号